Foundations of Physics

, Volume 37, Issue 12, pp 1767–1773 | Cite as

Information Loss as a Foundational Principle for the Second Law of Thermodynamics

  • T. L. Duncan
  • J. S. Semura


In a previous paper (Duncan, T.L., Semura, J.S. in Entropy 6:21, 2004) we considered the question, “What underlying property of nature is responsible for the second law?” A simple answer can be stated in terms of information: The fundamental loss of information gives rise to the second law. This line of thinking highlights the existence of two independent but coupled sets of laws: Information dynamics and energy dynamics. The distinction helps shed light on certain foundational questions in statistical mechanics. For example, the confusion surrounding previous “derivations” of the second law from energy dynamics can be resolved by noting that such derivations incorporate one or more assumptions that correspond to the loss of information. In this paper we further develop and explore the perspective in which the second law is fundamentally a law of information dynamics.


Second law Entropy Information Statistical mechanics Thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duncan, T.L., Semura, J.S.: Entropy 6, 21 (2004) CrossRefMATHADSGoogle Scholar
  2. 2.
    Sheehan, D.P. (ed.): Quantum Limits to the Second Law. AIP, New York (2002) MATHGoogle Scholar
  3. 3.
    Cápek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics: Theory and Experiment. Springer, Berlin (2005) MATHGoogle Scholar
  4. 4.
    Clausius, R.: Ann. Phys. 125, 353 (1865) Google Scholar
  5. 5.
    Boltzmann, L.: English translation in S.G. Brush, Kinetic Theory, vol. 2: Irreversible Processes. Pergamon, Oxford (1966) Google Scholar
  6. 6.
    ter Haar, D.: Elements of Thermostatistics. Holt, Reinhart, and Winston, New York (1966) Google Scholar
  7. 7.
    Jaynes, E.T.: Phys. Rev. 106, 620 (1957) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Jaynes, E.T.: Phys. Rev. 108, 171 (1957) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Szilard, L.: Z. Phys. 53, 840 (1929). Reprinted in Leff, H.S., Rex, A.F. (eds.) Maxwell’s Demon 2. Institute of Physics Publishing, Bristol (2003) CrossRefADSGoogle Scholar
  10. 10.
    Landauer, R.: IBM J. Res. Dev. 5, 183 (1961). Reprinted in Leff, H.S., Rex, A.F. (eds.) Maxwell’s Demon 2. Institute of Physics Publishing, Bristol (2003) MathSciNetMATHGoogle Scholar
  11. 11.
    Bennett, C.H.: IBM J. Res. Dev. 17, 525 (1973). Reprinted in Leff, H.S., Rex, A.F. (eds.), Maxwell’s Demon. Hilger, Bristol, jointly with Princeton University Press, Princeton (1990) MATHGoogle Scholar
  12. 12.
    Bennett, C.H.: Sci. Am. 257, 108 (1987) CrossRefGoogle Scholar
  13. 13.
    Penrose, O.: Foundations of Statistical Mechanics (1970) Google Scholar
  14. 14.
    Ladyman, J., et al.: PhilSciArchive/2689, (2006)
  15. 15.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (2001) MATHGoogle Scholar
  16. 16.
    Fuchs, C.A.: quant-ph/0205039 Google Scholar
  17. 17.
    Zeilinger, A.: Found. Phys. 29, 631 (1999) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hardy, L.: quant-ph/0111068 Google Scholar
  19. 19.
    Hardy, L.: quant-ph/0101012 Google Scholar
  20. 20.
    Spekkens, R.: quant-ph/0401052 Google Scholar
  21. 21.
    Duvenhage, R.: quant-ph/0203070 Google Scholar
  22. 22.
    Scully, M.O.: Phys. Rev. Lett. 87, 220601 (2001) CrossRefADSGoogle Scholar
  23. 23.
    Allahverdyan, A.E., Nieuwenhuizen, Th.M.: Phys. Rev. Lett. 85, 1799 (2000) CrossRefADSGoogle Scholar
  24. 24.
    Allahverdyan, A.E., Nieuwenhuizen, Th.M.: Phys. Rev. E 64, 056117 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for Science EducationPortland State UniversityPortlandUSA
  2. 2.Department of PhysicsPacific UniversityForest GroveUSA
  3. 3.Department of PhysicsPortland State UniversityPortlandUSA

Personalised recommendations