Advertisement

Foundations of Physics

, Volume 37, Issue 6, pp 919–950 | Cite as

Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator

  • Diego Julio Cirilo-Lombardo
Article

Relativistic geometrical action for a quantum particle in the superspace is analyzed from theoretical group point of view. To this end an alternative technique of quantization outlined by the authors in a previous work and that is based in the correct interpretation of the square root Hamiltonian, is used. The obtained spectrum of physical states and the Fock construction consist of Squeezed States which correspond to the representations with the lowest weights \(\lambda=\frac{1}{4}\) and \(\lambda=\frac{3}{4}\) with four possible (non-trivial) fractional representations for the group decomposition of the spin structure. From the theory of semigroups the analytical representation of the radical operator in the superspace is constructed, the conserved currents are computed and a new relativistic wave equation is proposed and explicitly solved for the time-dependent case. The relation with the Relativistic Schrödinger equation and the Time-dependent Harmonic Oscillator is analyzed and discussed.

Keywords

quantization squeezed states relativistic particle Hamiltonian formulation relativistic wave equation supergroups 

PACS

03.65.-w 11.30.Pb 42.50.-p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fatyga B.W. et al. (1991) Phys. Rev. D 43: 1403, and references thereinCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Kostelecky V.A. et al. (1993) Phys. Rev. A 48: 1045, and references thereinCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Kostelecky V.A. et al. (1993) Phys. Rev. A 48: 951, and references thereinCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Ermakov V. (1880) Univ. Izv. Kiev Serie III 9: 1Google Scholar
  5. 5.
    Husimi K. (1953) Prog. Theor. Phys. 9: 381CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Klauder J.R., Skagerstam B.S. (1985) Coherent States. World Scientific, SingaporeMATHGoogle Scholar
  7. 7.
    Shelby M.D. et al. (1986) Phys. Rev. Lett. 57, 691CrossRefADSGoogle Scholar
  8. 8.
    Caves C.M. et al. (1980) Rev. Mod. Phys. 52, 341CrossRefADSGoogle Scholar
  9. 9.
    Pashnev A.I., Volkov D.V. (1980) Teor. Mat. Fiz., Tom. 44(3): 321 [in Russian]MathSciNetGoogle Scholar
  10. 10.
    Casalbuoni R. (1976) Nuovo. Cim., 33A(3): 389MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Casalbuoni R. (1976) Phys. Lett. 62B, 49ADSMathSciNetGoogle Scholar
  12. 12.
    C. Lanczos: Variational Principles in Mechanics, (Mir, 1965, Russian version), 408 pp.Google Scholar
  13. 13.
    Stepanovsky Yu.P. (2001) Nucl. Phys. B (Proc. Suppl.), 102–103, 407CrossRefMathSciNetGoogle Scholar
  14. 14.
    Sannikov S.S. (1965) Zh.E.T.F. 49: 1913, [in Russian]MathSciNetGoogle Scholar
  15. 15.
    Dirac P.A.M. (1971) Proc. Roy. Soc. A 322, 435ADSGoogle Scholar
  16. 16.
    Sorokin D.P., Volkov D.V. (1993) Nucl. Phys. B 409, 547MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Sorokin D.P. (2002) Fortschr. Phys. 50, 724MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Volkov D.V. (1989) Piz’mq zh. E.T.F. 49: 473, [in Russian]Google Scholar
  19. 19.
    D. J. Cirilo-Lombardo, Rom. J. Phys. 50(7–8) 875, (2005); Elem. Particles Nucl. Lett. 6(3), 416 (2006); Hadronic J. 29, 355 (2006).Google Scholar
  20. 20.
    Akulov A.P., Volkov D.V. (1973) Phys. Lett. 46B, 109ADSGoogle Scholar
  21. 21.
    A. S. Bakai and Yu. P. Stepanovsky, Adiabatic Invariants (“Naukova Dumka”, Kiev, 1981), [in Russian], 65 pp.Google Scholar
  22. 22.
    Sucher J. (1963) J. Math. Phys. 4, 17, and references thereinMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Schweber S. (1964) An Introduction to Relativistic Quantum Field Theory. Row Peterson and Co.: Evanston, Illinois, 56 pp.Google Scholar
  24. 24.
    Sudarshan E.C.G. et al. (1982) Phys. Rev. D 25: 3237CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Sudarshan E.C.G., Mukunda N. (1970) Phys. Rev. D 1: 571CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Mukunda N. et al. (1980) J. Math. Phys. 21: 2386CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Gill T.L., Zachary W.W. (2005) J. Phys. A: Math. General 38: 2479MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    D. J. Cirilo-Lombardo, work in preparation.Google Scholar
  29. 29.
    Rogers A. (1980) J. Math. Phys. 21: 1352MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    De Witt B. (1984) Supermanifolds. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Picken R.F., Sundermeyer K. (1986) Comm. Math. Phys. 102: 585MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Yosida K. (1968) Functional Analysis. Springer, New York, 2nd ed.Google Scholar
  33. 33.
    Majorana E. (1932) Nuovo Cim. 9, 335MATHGoogle Scholar
  34. 34.
    Lämmerzahl C. (1993) J. Math. Phys. 34: 3918MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Feynman R.P., Gellman M. (1958) Phys. Rev. 109: 193MATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Cirilo-Lombardo D.J., Stepanovsky Yu.P. (2001) Problems Atomic Sci. Technol. 6, 182Google Scholar
  37. 37.
    A. I. Akhiezer and V. B. Beretsetsky, Quantum Electrodynamics, (Nauka, Moscow, 1981), 432 pp.Google Scholar
  38. 38.
    Bars I., Gunaydin M. (1983) Commun. Math. Phys. 91: 31MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Le-Man Kuang, Xing Chen (1993) J. Phys. A: Math. and General 27: L119CrossRefGoogle Scholar
  40. 40.
    Jezek D.M., Hernandez H.S. (1990) Phys. Rev. A 42: 96, and references thereinCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    M. Lachieze-Rey, On three quantization methods for a particle on hyperboloid, gr-qc/0503060 (2005).Google Scholar
  42. 42.
    R. Delbourgo, A square root of the harmonic oscillator, hep-th/9503056 (1995).Google Scholar
  43. 43.
    Elizalde E. (1999) JHEP 07: 015CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussian Federation

Personalised recommendations