Skip to main content
Log in

Gravitational Self-force from Quantized Linear Metric Perturbations in Curved Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We present a formal derivation of the Mino–Sasaki–Tanaka–Quinn–Wald (MSTQW) equation describing the self-force on a (semi-) classical relativistic point mass moving under the influence of quantized linear metric perturbations on a curved background space–time. The curvature of the space–time implies that the dynamics of the particle and the field is history-dependent and as such requires a non-equilibrium formalism to ensure the consistent evolution of both particle and field, viz., the worldline influence functional and the closed- time-path (CTP) coarse-grained effective action. In the spirit of effective field theory, we regularize the formally divergent self-force by smearing the local part of the retarded Green’s function and employing a quasi-local expansion. We derive the MSTQW–Langevin equations describing the perturbations of the particle’s worldline about its semi-classical trajectory resulting from interactions with the quantum fluctuations of the linear metric perturbations. Finally, we demonstrate that the quantum fluctuations of the field could, in principle, leave imprints on gravitational waveforms expected to be observed by gravitational interferometers, thereby encoding information about tree-level perturbative quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramovici A. et al. (1992). Science 256: 325

    Article  ADS  Google Scholar 

  2. The LISA website is http://lisa.jpl.nasa.gov/.

  3. L. Blanchet, Phys. Rev. D 54, 1417 (1996); 71, 129904(E) (2005); L. Blanchet, B. R. Iyer, and B. Joguet, Phys. Rev. D 65, 064005 (2002); 71, 129903(E) (2005); L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, Phys. Rev. D 65, 061501 (2002); 71, 129902(E) (2005).

  4. P. Jaranowski and G. Schäfer, Phys. Rev. D 57, 7274 (1998); 63, 029902(E) (2001); 60, 124003 (1999); T. Damour, P. Jaranowski, and G. Schafer, Phys. Rev. D 62, 021501 (2000); 63, 029903(E) (2001); 63, 044023 (2001); 72, 029902(E) (2005); L. Blanchet and G. Faye, Phys. Lett. A 271, 58 (2000); Phys. Rev. D 63, 062005 (2001); V. C. de Andrade, L. Blanchet, and G. Faye, Class. Quant. Gravit. 18, 753 (2001); L. Blanchet and B. R. Iyer, Class. Quant. Gravit. 20, 755 (2003).

  5. Mino Y., Sasaki M., Tanaka T. (1997). Phys. Rev. D 55: 3457

    Article  ADS  Google Scholar 

  6. Quinn T.C., Wald R.M. (1997). Phys. Rev. D 56: 3381

    Article  ADS  MathSciNet  Google Scholar 

  7. E. Poisson, “The motion of point particles in curved spacetime,” Living Rev. Relativity 7, 6 (2004). URL (cited on 26 March 2004): http://www.livingreviews.org/lrr-2004-6 [gr-qc/0306052].

    Google Scholar 

  8. P. Johnson and B. L. Hu, [quant-ph/0012137]; Phys. Rev. D 65, 065015 (2002).

    Google Scholar 

  9. P. R. Johnson and B. L. Hu, Found. Phys. 35, 1117 (2005), and references therein; P. Johnson, Ph. D. dissertation, University of Maryland (1999).

  10. A. Raval, B. L. Hu, and J. Anglin, Phys. Rev. D 53, 7003 (1996); A. Raval, B. L. Hu, and D. Koks, Phys. Rev. D 55, 4795 (1997); A. Raval, Ph. D. dissertation, University of Maryland (1996).

  11. Galley C.R., Hu B.L., Lin S.Y. (2006). Phys. Rev. D 74: 024017

    Article  ADS  Google Scholar 

  12. Galley C.R., Hu B.L. (2005). Phys. Rev. D 72: 084023

    Article  ADS  Google Scholar 

  13. Misner C.W., Thorne K.S., Wheeler J.A. (1973) Gravitation. Freeman, San Fransisco

    Google Scholar 

  14. P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, 1964).

  15. Faddeev L.D., Popov V.N. (1967). Phys. Lett. 25B: 29

    Google Scholar 

  16. Hu B.L., Paz J.P., Zhang Y. (1992). Phys. Rev. D 45: 2843

    Article  ADS  MathSciNet  Google Scholar 

  17. Grabert H., Schramm P., Ingold G.L. (1988). Phys. Rep. 168: 115

    Article  ADS  MathSciNet  Google Scholar 

  18. Romero L.D., Paz J.P. (1997). Phys. Rev. A 55: 4070

    Article  ADS  MathSciNet  Google Scholar 

  19. W. Goldberger and I. Z. Rothstein, Phys. Rev. D 73, 104029 (2006); R. A. Porto, Phys. Rev. D 73, 104031 (2006).

    Google Scholar 

  20. I. Z. Rothstein and R. A. Porto, Phys. Rev. Lett. 97, 021101 (2006).

  21. P. R. Johnson and B. L. Hu, Found. Phys. 35, 1117 (2005) [gr-qc/0501029].

  22. E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988).

  23. R. B. Griffiths, J. Stat. Phys. 36, 219 (1984); R. Omnès, J. Stat Phys. 53, 893 (1988); ibid. 53, 933 (1988); ibid. 53, 957 (1988); ibid. 57, 357 (1988); Ann. Phys. (NY) 201, 354 (1990); Rev. Mod. Phys. 64, 339 (1992); The Interpretation of Quantum Mechanics (Princeton UP, Princeton, 1994); M. Gell-Mann and J. B. Hartle, in Complexity, Entropy and the Physics of Information, W. H. Zurek, ed. (Addison-Wesley, Reading, 1990); M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345 (1993); J. B. Hartle, “Quantum mechanics of closed systems,” in Directions in General Relativity, Vol. 1, B. L. Hu, M. P. Ryan, and C. V. Vishveswara eds. (Cambridge University, Cambridge, 1993); H. F. Dowker and J. J. Halliwell, Phys. Rev. D 46, 1580 (1992); J. J. Halliwell, Phys. Rev. D 48, 4785 (1993); ibid. 57, 2337 (1998); T. A. Brun, Phys. Rev. D 47, 3383 (1993); J. P. Paz and W. H. Zurek, Phys. Rev. D 48, 2728 (1993); J. Twamley, Phys. Rev. D 48, 5730 (1993).

  24. E. Calzetta and B. L. Hu, “Decoherence of correlation histories,” in Directions in General Relativity, Vol. 2, B. L. Hu and T. A. Jacobson, eds. (Cambridge University, Cambridge, 1993), pp. 38–65.

  25. Hadamard J. (1923) Lectures on Cauchy’s Problem. Yale University Press, New Haven

    MATH  Google Scholar 

  26. P. Johnson and B. L. Hu, [quant-ph/0012137] (2000); P. R. Johnson and B. L. Hu, Phys. Rev. D 65, 065015 (2002).

  27. Schutz B.F. (1985) A First Course in General Relativity. (Cambridge University Press, Cambridge, UK

    Google Scholar 

  28. Calzetta E., Roura A., Verdaguer E. (2003). Physica A (Amsterdam) 319: 188

    MATH  ADS  MathSciNet  Google Scholar 

  29. D. A. R. Dalvit and F. D. Mazzitelli, Phys. Rev. D 56, 7779 (1997); D. A. R. Dalvit and F. D. Mazzitelli, Phys. Rev. D 60, 084018 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad R. Galley.

Additional information

Invited talk given at the International Association for Relativistic Dynamics (IARD),June 2006, University of Connecticut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galley, C.R. Gravitational Self-force from Quantized Linear Metric Perturbations in Curved Space. Found Phys 37, 460–479 (2007). https://doi.org/10.1007/s10701-007-9111-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9111-2

Keywords

Navigation