Advertisement

Foundations of Physics

, Volume 37, Issue 8, pp 1149–1180 | Cite as

Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator

  • Diego Julio Cirilo-Lombardo
Article

Relativistic geometrical action for a quantum particle in the superspace is analyzed from theoretical group point of view. To this end an alternative technique of quantization outlined by the authors in a previous work and, that is, based in the correct interpretation of the square root Hamiltonian, is used. The obtained spectrum of physical states and the Fock construction consist of Squeezed States (SS) which correspond to the representations with the lowest weights \({\lambda=\frac{1}{4}}\) and \({\frac{3}{4}}\) with four possible (non-trivial) fractional representations for the group decomposition of the spin structure. From the theory of semi-groups the analytical representation of the radical operator in the superspace is constructed, the conserved currents are computed and a new relativistic wave equation is proposed and explicitly solved for the time dependent case. The relation with the Relativistic Schrödinger equation and the Time-dependent Harmonic Oscillator (TDHO) is analyzed and discussed.

Keywords

quantization supergroups harmonic oscillator geometrical actions Hamiltonian formulation group theory 

PACS

03.65.-w 11.30.Pb 42.50.-p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.W. Fatyga et al., “Supercoherent states,” Phys. Rev. D 43, 1403 (1991), and references therein.Google Scholar
  2. 2.
    V.A. Kostelecky et al., Phys. Rev. A 48, 1045 (1993), and references therein.Google Scholar
  3. 3.
    V.A. Kostelecky et al., “Supersymmetry and a time dependent Landau system,” Phys. Rev. A 48, 951 (1993), and references therein.Google Scholar
  4. 4.
    Ermakov V. (1880) Univ. Izv. Kiev Ser. III, 9: 1Google Scholar
  5. 5.
    Husimi K.(1953) Prog. Theor. Phys. 9: 381CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Klauder J.R., Skagerstam B.S. (1985) Coherent States. World Scientific, SingaporeMATHGoogle Scholar
  7. 7.
    Shelby M.D., et al. (1986) Phys. Rev. Lett. 57: 691CrossRefADSGoogle Scholar
  8. 8.
    Cavesx C.M. et al.(1980) “On the measurement of a weak classical force coupled to a quantum mechanical oscillator I,” Rev. Mod. Phys. 52: 341CrossRefADSGoogle Scholar
  9. 9.
    A.I. Pashnev and D.V. Volkov, “Supersymmetric Lagrangian for particles in proper time,” Teor. Mat. Fiz. 44(3), 321 (1980) [in Russian].Google Scholar
  10. 10.
    Casalbuoni R. (1976) “The classical mechanics for Bose–Fermi systems,” Nuovo Cimento 33A(3): 389MathSciNetADSGoogle Scholar
  11. 11.
    Casalbuoni R. (1976) “Relatively and supersymmetries,” Phys. Lett. 62B: 49MathSciNetGoogle Scholar
  12. 12.
    Lanczos C., Variational Principles in Mechanics, (Mir, Moscow, 1965), p. 408 (Russian version).Google Scholar
  13. 13.
    Stepanovsky Yu.P., “On massless fields and relativistic wave equations,” Nucl. Phys. B (Proc. Suppl.) 102–103, 407 (2001)Google Scholar
  14. 14.
    S.S. Sannikov, “Non-compact symmetry group of a quantum oscillator,” Zh.E.T.F. 49, 1913 (1965), [in Russian].Google Scholar
  15. 15.
    Dirac P.A.M. (1971) “A positive-energy relativistic wave equation,” Proc. R. Soc. A 322: 435CrossRefADSGoogle Scholar
  16. 16.
    Sorokin D.P., Volkov D.V. (1993) “(Anti) commuting spinors and supersymmetric dynamics of semions,” Nucl. Phys. B 409, 547MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Sorokin D.P. (2002) “The Heisenberg algebra and spin,” Fortschr. Phys. 50: 724MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    D.V. Volkov, “Quartions in relativistic field theories,” Piz’ma Zh.E.T.F. 49, 473 (1989) [in Russian].Google Scholar
  19. 19.
    D.J. Cirilo-Lombardo, “Particle actions in the superspace, square root operators and quartions,” Rom. J. Phys. 50, 875 (2005); D. J. Cirillo-Lombardo, “On the Lorentz group SO(3,1), geometrical supersymmetric action for particles and square root operators,” Phys. Part. Nucl. Lett. 3, 416 (2006); D. J. Cirillo-Lombardo, “Superparticle actions, square root operators and the Lorentz group SO (3,1),” Hadronic J. 29, 355 (2006).Google Scholar
  20. 20.
    Akulov A.P., Volkov D.V. (1973) “Is the neutrino a Goldstone particle?” Phys. Lett. 46B: 109CrossRefGoogle Scholar
  21. 21.
    A.S. Bakai and Yu.P. Stepanovsky, Adiabatic Invariants (Naukova Dumka, Kiev, 1981), p. 65 [in Russian].Google Scholar
  22. 22.
    J. Sucher, “Relativistic invariance and the square-root Klein–Gordon equation,” J. Math. Phys. 4, 17 (1963), and references therein.Google Scholar
  23. 23.
    S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson & Co., Evanston, Illinois, 1964), p. 56.Google Scholar
  24. 24.
    Sudarshan E.C.G. et al. (1982) “Dirac positive energy wave equation with para-Bose internal variables,” Phys. Rev. D 25: 3237CrossRefMathSciNetGoogle Scholar
  25. 25.
    Sudarshan E.C.G., Mukunda N. (1970) “Quantum theory of the infinite-component majorana field and the relation of spin and statistics,” Phys. Rev. D 1: 571CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Mukunda N. et al. (1980) “Representations and properties of parabose oscillator operators. I. Energy position and momentum eigenstates,” J. Math. Phys. 21: 2386CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Gill T.L., Zachary W.W. (2005) J. Phys. A: Math. Gen. 38: 2479MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    D.J. Cirilo-Lombardo, work in preparation.Google Scholar
  29. 29.
    Rogers A. (1980) “A global theory of supermanifolds,” J. Math. Phys. 21: 1352MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    De Witt B. (1984) Supermanifolds. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Picken R.F., Sundermeyer K. (1986) “Integration on supermanifolds and a generalized cartan calculus,” Commun. Math. Phys. 102: 585MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Yosida K. (1968) Functional Analysis, 2nd edn. Springer, New YorkGoogle Scholar
  33. 33.
    Majorana E. (1932) Nuovo Cimento. 9: 335MATHCrossRefGoogle Scholar
  34. 34.
    Lämmerzahl C. (1993) J. Math. Phys. 34: 3918MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Feynman R.P., Gellman M. (1958). “Theory of the Fermi interaction,” Phys. Rev. 109: 193MATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Cirilo-Lombardo D.J., Stepanovsky Yu.P. (2001) Probl. At. Sci. Technol. 6: 182Google Scholar
  37. 37.
    A.I. Akhiezer and V.B. Beretsetsky, Quantum Electrodynamics, (Nauka, Moscow, 1981), p. 432.Google Scholar
  38. 38.
    Bars I., Gunaydin M. (1983) “Unitary representations of noncompact supergroups,”. Commun. Math. Phys. 91: 31MATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Kuang L.-M., Chen X. (1993) J. Phys. A: Math. Gen. 27: L119CrossRefMathSciNetGoogle Scholar
  40. 40.
    D.M. Jezek, H.S. Hernandez, “Nonlinear pseudospin dynamics on a noncompact manifold,” Phys. Rev. A 42, 96 (1990), and references therein.Google Scholar
  41. 41.
    Lachieze-Rey M., “On three quantization methods for a particle on hyperboloid,” gr-qc/0503060 (2005).Google Scholar
  42. 42.
    R. Delbourgo, “A square root of the harmonic oscillator,” hep-th/9503056 (1995).Google Scholar
  43. 43.
    E. Elizalde, “On the concept of determinant for the differential operators of quantum physics,” JHEP 07, 015 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical Physics and Joint Institute for Nuclear ResearchDubnaRussian Federation

Personalised recommendations