Skip to main content
Log in

Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator

  • Published:
Foundations of Physics Aims and scope Submit manuscript

An Erratum to this article was published on 21 November 2007

Relativistic geometrical action for a quantum particle in the superspace is analyzed from theoretical group point of view. To this end an alternative technique of quantization outlined by the authors in a previous work and, that is, based in the correct interpretation of the square root Hamiltonian, is used. The obtained spectrum of physical states and the Fock construction consist of Squeezed States (SS) which correspond to the representations with the lowest weights \({\lambda=\frac{1}{4}}\) and \({\frac{3}{4}}\) with four possible (non-trivial) fractional representations for the group decomposition of the spin structure. From the theory of semi-groups the analytical representation of the radical operator in the superspace is constructed, the conserved currents are computed and a new relativistic wave equation is proposed and explicitly solved for the time dependent case. The relation with the Relativistic Schrödinger equation and the Time-dependent Harmonic Oscillator (TDHO) is analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.W. Fatyga et al., “Supercoherent states,” Phys. Rev. D 43, 1403 (1991), and references therein.

  2. V.A. Kostelecky et al., Phys. Rev. A 48, 1045 (1993), and references therein.

  3. V.A. Kostelecky et al., “Supersymmetry and a time dependent Landau system,” Phys. Rev. A 48, 951 (1993), and references therein.

  4. Ermakov V. (1880) Univ. Izv. Kiev Ser. III, 9: 1

    Google Scholar 

  5. Husimi K.(1953) Prog. Theor. Phys. 9: 381

    Article  ADS  MathSciNet  Google Scholar 

  6. Klauder J.R., Skagerstam B.S. (1985) Coherent States. World Scientific, Singapore

    MATH  Google Scholar 

  7. Shelby M.D., et al. (1986) Phys. Rev. Lett. 57: 691

    Article  ADS  Google Scholar 

  8. Cavesx C.M. et al.(1980) “On the measurement of a weak classical force coupled to a quantum mechanical oscillator I,” Rev. Mod. Phys. 52: 341

    Article  ADS  Google Scholar 

  9. A.I. Pashnev and D.V. Volkov, “Supersymmetric Lagrangian for particles in proper time,” Teor. Mat. Fiz. 44(3), 321 (1980) [in Russian].

  10. Casalbuoni R. (1976) “The classical mechanics for Bose–Fermi systems,” Nuovo Cimento 33A(3): 389

    MathSciNet  ADS  Google Scholar 

  11. Casalbuoni R. (1976) “Relatively and supersymmetries,” Phys. Lett. 62B: 49

    MathSciNet  Google Scholar 

  12. Lanczos C., Variational Principles in Mechanics, (Mir, Moscow, 1965), p. 408 (Russian version).

  13. Stepanovsky Yu.P., “On massless fields and relativistic wave equations,” Nucl. Phys. B (Proc. Suppl.) 102–103, 407 (2001)

    Google Scholar 

  14. S.S. Sannikov, “Non-compact symmetry group of a quantum oscillator,” Zh.E.T.F. 49, 1913 (1965), [in Russian].

  15. Dirac P.A.M. (1971) “A positive-energy relativistic wave equation,” Proc. R. Soc. A 322: 435

    Article  ADS  Google Scholar 

  16. Sorokin D.P., Volkov D.V. (1993) “(Anti) commuting spinors and supersymmetric dynamics of semions,” Nucl. Phys. B 409, 547

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Sorokin D.P. (2002) “The Heisenberg algebra and spin,” Fortschr. Phys. 50: 724

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. D.V. Volkov, “Quartions in relativistic field theories,” Piz’ma Zh.E.T.F. 49, 473 (1989) [in Russian].

  19. D.J. Cirilo-Lombardo, “Particle actions in the superspace, square root operators and quartions,” Rom. J. Phys. 50, 875 (2005); D. J. Cirillo-Lombardo, “On the Lorentz group SO(3,1), geometrical supersymmetric action for particles and square root operators,” Phys. Part. Nucl. Lett. 3, 416 (2006); D. J. Cirillo-Lombardo, “Superparticle actions, square root operators and the Lorentz group SO (3,1),” Hadronic J. 29, 355 (2006).

    Google Scholar 

  20. Akulov A.P., Volkov D.V. (1973) “Is the neutrino a Goldstone particle?” Phys. Lett. 46B: 109

    Article  Google Scholar 

  21. A.S. Bakai and Yu.P. Stepanovsky, Adiabatic Invariants (Naukova Dumka, Kiev, 1981), p. 65 [in Russian].

  22. J. Sucher, “Relativistic invariance and the square-root Klein–Gordon equation,” J. Math. Phys. 4, 17 (1963), and references therein.

  23. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson & Co., Evanston, Illinois, 1964), p. 56.

  24. Sudarshan E.C.G. et al. (1982) “Dirac positive energy wave equation with para-Bose internal variables,” Phys. Rev. D 25: 3237

    Article  MathSciNet  Google Scholar 

  25. Sudarshan E.C.G., Mukunda N. (1970) “Quantum theory of the infinite-component majorana field and the relation of spin and statistics,” Phys. Rev. D 1: 571

    Article  ADS  MathSciNet  Google Scholar 

  26. Mukunda N. et al. (1980) “Representations and properties of parabose oscillator operators. I. Energy position and momentum eigenstates,” J. Math. Phys. 21: 2386

    Article  ADS  MathSciNet  Google Scholar 

  27. Gill T.L., Zachary W.W. (2005) J. Phys. A: Math. Gen. 38: 2479

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. D.J. Cirilo-Lombardo, work in preparation.

  29. Rogers A. (1980) “A global theory of supermanifolds,” J. Math. Phys. 21: 1352

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. De Witt B. (1984) Supermanifolds. Cambridge University Press, Cambridge

    Google Scholar 

  31. Picken R.F., Sundermeyer K. (1986) “Integration on supermanifolds and a generalized cartan calculus,” Commun. Math. Phys. 102: 585

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Yosida K. (1968) Functional Analysis, 2nd edn. Springer, New York

    Google Scholar 

  33. Majorana E. (1932) Nuovo Cimento. 9: 335

    Article  MATH  Google Scholar 

  34. Lämmerzahl C. (1993) J. Math. Phys. 34: 3918

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Feynman R.P., Gellman M. (1958). “Theory of the Fermi interaction,” Phys. Rev. 109: 193

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Cirilo-Lombardo D.J., Stepanovsky Yu.P. (2001) Probl. At. Sci. Technol. 6: 182

    Google Scholar 

  37. A.I. Akhiezer and V.B. Beretsetsky, Quantum Electrodynamics, (Nauka, Moscow, 1981), p. 432.

  38. Bars I., Gunaydin M. (1983) “Unitary representations of noncompact supergroups,”. Commun. Math. Phys. 91: 31

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Kuang L.-M., Chen X. (1993) J. Phys. A: Math. Gen. 27: L119

    Article  MathSciNet  Google Scholar 

  40. D.M. Jezek, H.S. Hernandez, “Nonlinear pseudospin dynamics on a noncompact manifold,” Phys. Rev. A 42, 96 (1990), and references therein.

  41. Lachieze-Rey M., “On three quantization methods for a particle on hyperboloid,” gr-qc/0503060 (2005).

  42. R. Delbourgo, “A square root of the harmonic oscillator,” hep-th/9503056 (1995).

  43. E. Elizalde, “On the concept of determinant for the differential operators of quantum physics,” JHEP 07, 015 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Julio Cirilo-Lombardo.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10701-007-9192-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirilo-Lombardo, D.J. Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator. Found Phys 37, 1149–1180 (2007). https://doi.org/10.1007/s10701-007-9110-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9110-3

Keywords

PACS

Navigation