Skip to main content
Log in

The Universe Accelerated Expansion using Extra-dimensions with Metric Components Found by a New Equivalence Principle

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Curved multi-dimensional space-times (5D and higher) are constructed by embedding them in one higher-dimensional flat space. The condition that the embedding coordinates have a separable form, plus the demand of an orthogonal resulting space-time, implies that the curved multi-dimensional space-time has 4D de-Sitter subspaces (for constant extra-dimensions) in which the 3D subspace has an accelerated expansion. A complete determination of the curved multi-dimensional spacetime geometry is obtained provided we impose a new type of “equivalence principle”, meaning that there is a geodesic which from the embedding space has a rectliniar motion. According to this new equivalence principle, we can find the extra-dimensions metric components, each curved multi-dimensional spacetime surface’s equation, the energy-momentum tensors and the extra-dimensions as functions of a scalar field. The generic geodesic in each 5D spacetime are studied: they include solutions where particle’s motion along the extra-dimension is periodic and the 3D expansion factor is inflationary (accelerated expansion). Thus, the 3D subspace has an accelerated expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Perlmutter et al., Nature 391, 51 (1998); S. J. Perlmutter et al., astro-ph/9812133 (1998). SNAP Collaboration, astro-ph/040616. O. G. Riess et al., Astron. J. 116, (1998). N. A. Bahcall, J. P. Ostriker, S. Perlmutter, and P. J. Steinhardt, astro-ph/9906463 (1999).

  2. A. H. Guth, Phys. Rev. D 23, 347–356(1981). E. Albrecht, P. J. Steinhardt, Phys. Rev. Lett. 48, 1220–1223(1982). A. D. Linde, Phys. Lett. B 108, 389–393 (1982). A. D. , Phys. Lett. B 129, 177–181(1983).

  3. Y. B. Zeldovich, JETP Lett. 6, 316 (1967), Z. Pisma, Eksp. Teor. 6, 883 (1967). P. K. Townsend and M. N. R. Wohlfarth, Phys. Rev. Lett. 91, 061302 (2003). Mauricio Bellini, gr-qc/0602014 1 (2006).

  4. Abbott L., (1988) . Sci. Am. 258, 106–113

    Article  ADS  Google Scholar 

  5. I. Zlatev, L. M. Wong, and P. J. Steinhardt, Phys. Rev. Lett. 82, 896–899 (1999). Z. Haiman, J. Mohr, and G. Holder, Astrophys. J. 553, 545 (2000). T. Barreiro, E. Copeland, and N. Nunes, Phys. Rev. D 61, 127301 (2000). L. Amendola, Phys. Rev. D 62, 043511 (2000). T. Chiba, Phys. Rev. D 60, 083508 (1999). L. M. Wang, R. R. Caldwell, J. P. Ostriker, and P. J. Steinhart, Astrophys. J. 530, 17–35 (2000). S. Carrol, Phys. Rev. Lett. 81, 3067 (1998).

  6. E. I. Guendelman, and A. B. Kaganovich, gr-qc/0408026 1 (2004). E. I. Guendelman, and A. B. Kaganovich, hep-th/041118 2 (2004).

  7. E. W. Kolb, S. Matarrese, and A. Riotto, astro-ph/0506534 1 (2005).

  8. T. Appelquist, A. Chodos, and P. G. O. Freund, Modern Kaluza-Klein Theories (1987). For application of Kaluza-Klein theories to obtain an accelerated universe, see: P. K. Townsend, and N. R. Wohlfarth, Phys. Rev. Lett. 91, 06130 (2003).

  9. V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B 123, 136 (1983); K. Akama, “Pre-geometry,” in Gauge Theory and Gravitation, Proceeding, Nara (1982) K. , N. Nakanishi, and H. Nariai, eds. (Lecture Notes in Physics 176, Springer, Berlin, 1983), and hep-th/0001113; M. Visser, Phys. Lett. B 159, 22 (1985); M. Pavsic, Class. Quantum Grav. 2, 869 (1985); ibid. Phys. Lett. A 116, 1 (1986); P.Horava, E. Witten, Nucl. Phys. B 460, 507 (1996); B 475, 94 (1996); N. Arkani-Hamed, S. Dimopolos, and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopolos, and G. Dvali, Phys. Lett. B 436, 257 (1998); N. Arkani-Hamed, S. Dimopolos, and J. Mark-Russel, Phys. Rev. D 63, 064020 (2001); L. Randall, and R. Sundrum, hepth/9906064 (1999); L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690–4693 (1999); R. Sundrum, Phys. Rev. D 59, 085010 (1999); J. W. Chen, M. A. Luty, and E. Poton, JHEP 0009, 012 (2000); V. A. Rubakov, Phys. Usp. 44, 871–893 (2001); I. I. Kogan, S. Mouslopoulos, A. Papazoglou, and G. G. Ross, Phys. Rev. D 64, 124014 (2001); J. Louko, D. L. Wiltshire, JHEP 0202, 007 (2002); S. M. Carroll, M. Guica, hep-th/0302067; I. Navarro, JCAP 0309, 004 (2003); J. M. Cline, J. Descheneau, M. Giovannini, and J. Vinet, JHEP 0306, 048 (2003); Y. Aghababaaie, C. P. Burgess, S. L. Parameswaran, and F.Quevedo, hep-th0304256; E. I. Guendelman, Phys. Lett. B 580, 87 (2004); E. I. Guendelman, and E. Spallucci, Phys. Rev. D 70, 026003 (2004).

  10. P. S. Wesson, Space-Time-Matter (World Scientific, Singapore, 1999); T. Liko and P. S. Wesson, gr-qc/0505024 2 (2005).

  11. Y. Kim, C. Young Oh, and N. Park, hep-th/0212326 (2002); E. A. Bergshoff, A. Collinucci, D. Roest, J. G. Russo, and P. K. Townsend, hep-th/0504011 (2005).

  12. S. Behar and M. Carmeli, Journal-ref: Int. J. Theor. Phys. 39, 1375–1396 (2000); M. Carmeli, Cosmological Spacial Relativity (World Scientific, Singapore, 2002); J. Hartnett, Int. J. Theor. Phys. 44, 495–502 (2005).

  13. Guendelman E., Ruchvarger H., (2004) . Int. J. Mod. Phys. A 19: 3377

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Guendelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guendelman, E., Ruchvarger, H. The Universe Accelerated Expansion using Extra-dimensions with Metric Components Found by a New Equivalence Principle. Found Phys 36, 1846–1868 (2006). https://doi.org/10.1007/s10701-006-9084-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9084-6

Keywords

Navigation