Skip to main content
Log in

Reference Frames and Rigid Motions in Relativity: Applications

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The concept of rigid reference frame and of constricted spatial metric, given in the previous work [Class. Quantum Grav. 21, 3067 (2004)] are here applied to some specific space-times: in particular, the rigid rotating disc with constant angular velocity in Minkowski space-time is analyzed, a new approach to the Ehrenfest paradox is given as well as a new explanation of the Sagnac effect. Finally the anisotropy of the speed of light and its measurable consequences in a reference frame co-moving with the Earth are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cartan E., (1951). Leçons sur la géometrie des espaces de Riemann. Gauthier-Villars, Paris

    MATH  Google Scholar 

  2. Llosa J., Soler D., (2004). “Reference frames and rigid motions in relativity”. Class. Quantum Grav. 21(13): 3067–3094

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Abramowicz M.A., Lasota J.P., (1997). “A brief story of a straight circle”. Class. Quantum Grav. 14: A23–A30

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Jonsson R., Westman H., (2006). “Generalizing optical geometry”. Class. Quantum Grav. 23, 61–76

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Sagnac M.G., (1913). “Effect tourbillonnaire optique. la cisulation de l’éther lumineux dans un interférographe tournant”. C. R. Acad. Sci. Paris 157, 708

    Google Scholar 

  6. Brillet A., Hall J.L., (1979). “Improved laser test of the isotropy of space”. Phys. Rev. Lett. 42(9): 549–552

    Article  ADS  Google Scholar 

  7. L. Bel, “Frames of reference and some of its applications,” in Proc. Encuentros Relativistas Españoles-1998: Relativity and Gravitation in General, A. Molina, J. Martin, E. Ruiz, and F. Atrio, eds. (World Scientific, Singapore, 1999).

  8. Bel L., Molina A., (2000). “Local anisotropy of space in a frame of reference co-moving with the earth”. Nuovo Cim. B115, 577–586

    ADS  Google Scholar 

  9. J. Aguirregabiria, L. Bel, J. Martin, and A. Molina, “Variatons of the speed of light in vacuum,” in Proc. Relativity Meeting, Bilbo: Recent developments in Gravitation, A. Feinstein, and J. Ibáñez, eds (World Scientific, Singapore, 1991), 61–79.

  10. Bel L., Martin J., Molina A., (1994). “Rigid motion in special and general relativity”. J. Phys. Soc. Jpn. 63(12): 4350–4363

    Article  MATH  MathSciNet  Google Scholar 

  11. Landau L., Lifschitz E., (1985). The Classical Theory of Fields. Pergamon, Oxford

    MATH  Google Scholar 

  12. Herglotz G., (1910). “Über den vom standpunkt des relativitätsprinzips aus als ‘starr’zu bezeichnenden körper”. Ann. Phys. 31, 393

    MATH  Google Scholar 

  13. Noether F., (1910). “Zur kinematik des starren körpers in der relativtheorie”. Ann. Phys. Lpz. 31, 919

    MATH  Google Scholar 

  14. Bel L., (1996). “Principal mappings of 3-dimensional riemannian sapces of constant curvature”. Gen. Rel. Grav. 28(9): 1139

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Bel L., “Testing a crucial assumption,” arXiv: physics/0502137 (2005).

  16. Cattaneo C., (1959). “Proiezioni naturali e derivazione trasversa in una varietá riemanniana a metrica iperbolica normale”. Ann. Mat. Pura Ed Appl. S. IV, T. XLVIII: 361–386

    Article  MathSciNet  Google Scholar 

  17. Zel’manov A., (1956) . Sov. Phys. Dokl. 1, 227

    Google Scholar 

  18. Boersma S., Dray T., (1995). “Parametric manifolds i: Extrinsic approach”. J. Math. Phys. 36: 1378

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Rizzi G., Ruggiero M., (2002). “Space geometry of rotating platforms: an operational approach”. Found. Phys. 32: 1525–1556

    Article  MathSciNet  Google Scholar 

  20. D. Soler, Sistemes de referència i moviments rigids en Relativitat General. PhD thesis (Universitat de Barcelona, May, 2003); also in http://hermes.ffn.ub.es/~dani/

  21. Born M., (1909). “On the dynamic of the electron in the cinematics of the relativity principle”. Phys. Z. 10, 814–817

    MATH  Google Scholar 

  22. Ehrenfest P., (1909). “Similar type rotation of rigid bodies and the theory of relativity”. Phys. Z. 10, 918

    MATH  Google Scholar 

  23. Ruggiero M., (2003). “Relative space: Space mesaurements on a rotating platforms”. Eur. Jour. Phys. 24, 563–573

    Article  MATH  Google Scholar 

  24. Rodrigues W., Sharif M., (2001). “Rotating frames in srt: The sagnac effect ans related issues”. Found. Phys. 31(12): 1767–1783

    Article  MathSciNet  Google Scholar 

  25. Klauber R.D., (1998). “New perspectives on the relativistically rotating disk and non-time-orthogonal reference frames”. Found. Phys. Lett. 11, 405–443

    Article  MathSciNet  Google Scholar 

  26. Klauber R.D., (1999). “Relativistically rotating frames and non-time-orthogonality”. Am. J. Phys. 67, 158

    Article  ADS  Google Scholar 

  27. R. D. Klauber, “Non-time-orthogonal reference frames in the theory of relativity,’ arXiv: gr-qc/0005121 (2000).

  28. Tartaglia A., (1999). “Lengths on rotating platforms”. Found. Phys. Lett. 12, 17–28

    Article  MathSciNet  Google Scholar 

  29. Rizzi G., Tartaglia A., (1998). “Speed of light on rotating platforms”. Found. Phys. 28: 1663

    Article  MathSciNet  Google Scholar 

  30. Klauber R.D., (2003). “Derivation of the general case sagnac result using non-time-orthogonal analysis”. Found. Phys. Lett. 16, 447–463

    Article  Google Scholar 

  31. Selleri F., (1997). “Noninvariant one-way speed of light and locally equivalent reference frames”. Found. Phys. Lett. 10, 73

    MathSciNet  Google Scholar 

  32. Bel L., Llosa J., (1995). “Meta-rigid motions and frames of reference”. Gen. Rel. Grav. 27(10): 1089–1110

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Llosa and D. Soler, “Fermat-holonomic congruences,” arXiv: gr-qc/0003056 (2003).

  34. Rizzi G., Ruggiero M., (2003). “A direct derivation of the relativistic sagnac effect for light or matter beams”. Gen. Rel. Grav. 35: 2129–2136

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Michelson A.A., Morley A., (1887). “On the relative motion of the earth and the luminiferous ether”. Am. J. Sci. 34, 333

    Google Scholar 

  36. Antonini P., Okhapkin M., Göklü E., Schiller S., (2005). “Test of constancy of speed of light with rotating cryogenic optical resonators”. Phys. Rev. A 71(5): 1–4

    Article  Google Scholar 

  37. L. Bel, “Sensitivity of high precision michelson-morley experiments to tilting of their setups,” arXiv: gr-qc/0509005 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Soler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soler, D. Reference Frames and Rigid Motions in Relativity: Applications. Found Phys 36, 1718–1735 (2006). https://doi.org/10.1007/s10701-006-9080-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9080-x

Keywords

PACS NUMBERS

Navigation