Skip to main content
Log in

Classical Versus Quantum Probability in Sequential Measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We demonstrate in this paper that the probabilities for sequential measurements have features very different from those of single-time measurements. First, they cannot be modelled by a classical stochastic process. Second, they are contextual, namely they depend strongly on the specific measurement scheme through which they are determined. We construct Positive-Operator-Valued measures (POVM) that provide such probabilities. For observables with continuous spectrum, the constructed POVMs depend strongly on the resolution of the measurement device, a conclusion that persists even if we consider a quantum mechanical measurement device or the presence of an environment. We then examine the same issues in alternative interpretations of quantum theory. We first show that multi-time probabilities cannot be naturally defined in terms of a frequency operator. We next prove that local hidden variable theories cannot reproduce the predictions of quantum theory for sequential measurements, even when the degrees of freedom of the measuring apparatus are taken into account. Bohmian mechanics, however, does not fall in this category. We finally examine an alternative proposal that sequential measurements can be modeled by a process that does not satisfy the Kolmogorov axioms of probability. This removes contextuality without introducing non-locality, but implies that the empirical probabilities cannot be always defined (the event frequencies do not converge). We argue that the predictions of this hypothesis are not ruled out by existing experimental results (examining in particular the “which way” experiments); they are, however, distinguishable in principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell J.S., (1964). “On the Einstein–Podolsky–Rosen paradox”. Physics 1, 195

    Google Scholar 

  2. Kochen S., Specker R.P., (1967). “The problem of hidden variables in quantum mechanics”. J. Math. Mech. 17, 59

    MATH  MathSciNet  Google Scholar 

  3. Anastopoulos C., (2001). “Quantum theory without Hilbert spaces”. Found. Phys. 31: 1545

    Article  MathSciNet  Google Scholar 

  4. Anastopoulos C., (2003). “Quantum processes on phase space”. Ann. Phys. 303, 275

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. R. D. Sorkin, “Quantum mechanics as quantum measure theory,” Mod. Phys. Lett. A 9, 3119 (1994); “Quantum measure theory and its interpretatio,” in Quantum- Classical Correspondence, D. H. Feng and B. L. Hu, eds. (International Press, Cambridge, MA, 1997).

  6. Nelson E., (1966). “Derivation of Schrödinger’s equation from Newtonian mechanics”. Phys. Rev. 150: 1079

    Article  ADS  Google Scholar 

  7. Nelson E., (1985). Quantum Fluctuations. Princeton University Press, Princeton

    MATH  Google Scholar 

  8. Griffiths R., (1984). “Consistent histories and the interpretation of quantum mechanics”. J. Stat. Phys. 36, 219

    Article  MATH  Google Scholar 

  9. R. Omnès, “Logical reformulation of quantum mechanics: I Foundations,” J. Stat. Phys. 53, 893 (1988); The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994); “Consistent interpretations of quantum mechanics,” Rev. Mod. Phys. 64, 339 (1992).

    Google Scholar 

  10. M. Gell-Mann and J. B. Hartle, “Quantum mechanics in the light of quantum cosmology,” in Complexity, Entropy and the Physics of Information, W. Zurek, ed. (Addison Wesley, Reading, 1990); “Classical equations for quantum systems,” Phys. Rev. D 47, 3345 (1993).

  11. J. B. Hartle, “Spacetime quantum mechanics and the quantum mechanics of spacetime,” in Proceedings on the 1992 Les Houches School, Gravitation and Quantisation 1993, Les Houches, France (Elsevier, Amsterdam, 1995).

  12. Aharonov Y., Bergmann P.G., Lebowitz J.L., (1964). “Time symmetry in the quantum process of measurement”. Phys. Rev. 134: B1410

    Article  MathSciNet  ADS  Google Scholar 

  13. Davies E.B., Lewis J.T., (1971). “An operational approach to quantum probability”. Comm. Math. Phys. 17, 3

    MathSciNet  Google Scholar 

  14. Davies E.B., (1976). Quantum Theory of Open Systems. Academic, London

    MATH  Google Scholar 

  15. Albert D.Z., Aharonov Y., Amato S.D’, (1985). “Multiple-time properties of quantum-mechanical systems”. Phys. Rev. D 32: 1975

    Article  MathSciNet  ADS  Google Scholar 

  16. Caves C.M., (1986). “Quantum mechanics of measurements distributed in time. A path- integral formulation”. Phys. Rev. D 33: 1643

    Article  MathSciNet  ADS  Google Scholar 

  17. Misra B., Sudarshan E.C.G., (1977). “The Zeno’s paradox in quantum theory”. J. Math. Phys. 18, 657

    Article  MathSciNet  Google Scholar 

  18. Busch P., Cassinelli G., Lahti P., (1990). “On the quantum theory of sequential measurements”. Found. Phys. 20, 757

    Article  MathSciNet  Google Scholar 

  19. Halliwell J.J., (1993). “Quantum-mechanical histories and the uncertainty principle: information-theoretic inequalities”. Phys. Rev. D 48: 2739

    Article  MathSciNet  ADS  Google Scholar 

  20. Gudder S., Nagy G., (2001). “Sequential quantum measurements”. J. Math. Phys. 42: 5212

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Holevo A.S., (2001). Statistical Structure in Quantum Theory. Springer, New York

    Google Scholar 

  22. Anastopoulos C., (2004). “On the relation between quantum mechanical probabilities and event frequencies”. Ann. Phys. 313, 368

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. von Neumann J., (1996). The Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton

    Google Scholar 

  24. Busch P., Lahti P., Mittelstaedt P., (1996). The Quantum Theory of Measurement. Springer Verlag, Berlin

    MATH  Google Scholar 

  25. Busch P., Lahti P., (1996). “The standard model of quantum measurement theory: history and applications”. Found. Phys. 26, 875

    Article  MathSciNet  Google Scholar 

  26. Bassi A., Ghirardi G., (2000). “A general argument against the universal validity of the superposition principle”. Phys. Lett. A 275, 373

    Article  MathSciNet  ADS  Google Scholar 

  27. Schlosshauer M., (2004). “Decoherence, the measurement problem, and interpretations of quantum mechanics”. Rev. Mod. Phys. 76: 1267

    Article  ADS  Google Scholar 

  28. Adler S.L., “Why decoherence has not solved the measurement problem: a response to P. W. Anderson,” Stud. Hist. Philos. Mod. Phys. 34, 135 (2003) and /0112095.

  29. Dass T., “Measurements and decoherence,” quant-ph/0505070.

  30. D. Z. Albert, Y. Aharonov, and S. D’ Amato, “Curious new statistical prediction of quantum mechanics,” Phys. Rev. Lett. 54, 5 (1985); J. D. Z. Albert, Y. Aharonov, and S. D’ Amato, “Curious properties of quantum ensembles which have been both preselected and post-selected,” Phys. Rev. Lett. 56, 2427 (1986).

    Google Scholar 

  31. A. Kent, “Consistent sets yield contrary inferences in quantum theory,” Phys. Rev. Lett. 78, 2874 (1997); R. B. Griffiths and J. B. Hartle, “Comment on consistent sets yield contrary inferences in quantum theory,” Phys. Rev. Lett. 81, 1981 (1998).

    Google Scholar 

  32. Bohm D., Hiley B.J., (1995). The Undivided Universe. Routledge, London

    MATH  Google Scholar 

  33. Neumaier A., “Bohmian mechanics contradicts quantum mechanics,” quant-ph/ 0001011.

  34. Feligioni L., Panella O., Srivastava Y.N., Widom A., (2005). “Two-time correlation functions: Bohm theory and conventional quantum mechanics”. Eur. Phys. J. B 48, 233

    Article  ADS  Google Scholar 

  35. Hartle J.B., (2004). “Bohmian histories and decoherent histories”. Phys. Rev. A 69: 042111

    Article  MathSciNet  ADS  Google Scholar 

  36. Bohm D., “A suggested interpretation of the quantum theory in terms of hidden variables II,” Phys. Rev. 85, 180 (1952); D. Bohm and B. J. Hiley, “Measurement understood through the quantum potential approach,” Found. Phys. 14, 255 (1984); J. S. Bell, “Quantum mechanics for cosmologists,” in Quantum Gravity 2; A Second Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, England, 1981); D. Duerr, S. Goldstein, and N. Zanghi, “Quantum equilibrium and the origin of absolute uncertainty,” J. Stat. Phys. 67, 843 (1992).

    Google Scholar 

  37. P. Blanchard, S. Golin, and M. Serva, “Repeated measurements in stochastic mechanics,” Phys. Rev. D 34, 3732 (1986); S. Goldstein, “Stochastic mechanics and quantum theory,” J. Stat. Phys. 47, 645 (1987); G. Peruzzi and A. Rimini, “Quantum measurement in a family of hidden-variable theories,” Found. Phys. Lett. 9, 505 (1996).

    Google Scholar 

  38. Popescu S., (1995). “Bell’s inequalities and density matrices: revealing hidden nonlocality”. Phys. Rev. Lett. 74: 2619

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Zukowski M., Horodecki R., Horodecki M., Horodecki P., (1998). “Generalized quantum measurements and local realism”. Phys. Rev. A 58: 1694

    Article  MathSciNet  ADS  Google Scholar 

  40. Leggett A.J., Garg A., (1985). “Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?”. Phys. Rev. Lett. 54, 857

    Article  MathSciNet  ADS  Google Scholar 

  41. Paz J.P., Mahler G., (1993). “Proposed test for temporal Bell inequalities”. Phys. Rev. Lett. 71: 3235

    Article  ADS  Google Scholar 

  42. Calarco T., Cini M., Onofrio R., (1999). “Are violations to temporal Bell inequalities there when somebody looks?”. Europhys. Lett. 47, 407–413

    Article  MathSciNet  ADS  Google Scholar 

  43. Englert B.G., Scully M.O., G. Süssmann, and H. Walther, “Surrealistic Bohm trajectories,” Z. Naturforch. 48A, 1261 (1993); Y. Aharonov and L. Vaidman, “About position measurements which do not show the Bohmian particle position,” in Bohmian Mechanics and Quantum Theory: An Appraisal, J. T. Cushing, A. Fine, and S. Goldstein, eds. (Kluwer Academic, Dordrecht, 1996); B. J. Hiley, R. E. Callaghan, and O. Maroney, “Quantum trajectories, real, surreal or an approximation to a deeper process?” quant-ph/0010020.

  44. ’t Hooft G., (2003). “Determinism in free bosons”. Int. J. Theor. Phys. 42, 355

    Article  MathSciNet  Google Scholar 

  45. Finkelstein D., (1963). “The logic of quantum physics”. Trans. N.Y. Acad. Sci. 25, 621

    MathSciNet  Google Scholar 

  46. Hartle J.B., (1968). “Quantum mechanics of individual systems”. Am. J. Phys. 36, 704

    Article  Google Scholar 

  47. Mittelstaedt P., (2004). The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge, MA

    MATH  Google Scholar 

  48. Caves C.M., Schack R., (2005). “Properties of the frequency operator do not imply the quantum probability postulate”. Ann. Phys. 315, 123

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. M. O. Scully and H. Walther, “Quantum optical tests of observation and complementarity in quantum mechanics,” Phys. Rev. A 39, 5229 (1989); M. O. Scully and K. Druhl, “Quantum eraser: A proposed photon correlation experiment concerning observation and ‘delayed choice’ in quantum mechanics,” Phys. Rev. A25, 2208 (1982); S. M. Tan and D. F. Walls, “Loss of coherence in interferometry,” Phys. Rev. A 47, 4663 (1993); B. G. Englert, “Fringe visibility and which-way nformation: an inequality,” Phys. Rev. Lett. 77, 2154 (1996).

    Google Scholar 

  50. Jammer M., (1974). The Philosophy of Quantum Mechanics. Wiley, New York

    Google Scholar 

  51. Anastopoulos C. and Savvidou N., “Time-of-arrival probabilities and quantum measurement,” J. Math. Phys. (Dec. 2006) and quant-ph/0509020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Anastopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastopoulos, C. Classical Versus Quantum Probability in Sequential Measurements. Found Phys 36, 1601–1661 (2006). https://doi.org/10.1007/s10701-006-9077-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9077-5

Keywords

Navigation