Skip to main content
Log in

On the Material Invariant Formulation of Maxwell’s Displacement Current

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Maxwell accounted for the apparent elastic behavior of the electromagnetic field by augmenting Ampere’s law with the so-called displacement current, in much the same way that he treated the viscoelasticity of gases. Maxwell’s original constitutive relations for both electrodynamics and fluid dynamics were not material invariant. In the theory of viscoelastic fluids, the situation was later corrected by Oldroyd, who introduced the upper-convective derivative. Assuming that the electromagnetic field should follow the general requirements for a material field, we show that if the upper convected derivative is used in place of the partial time derivative in the displacement current term, Maxwell’s electrodynamics becomes material invariant. Note, that the material invariance of Faraday’s law is automatically established if the Lorentz force is admitted as an integral part of the model. The new formulation ensures that the equation for conservation of charge is also material invariant in vacuo. The viscoelastic medium whose apparent manifestation are the known phenomena of electrodynamics is called here the metacontinuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson J.D., Laing P.A., Lau E.L., Liu A.S., Nieto M.M., Turyshev S.G., (2002). “Study of the anomalous acceleration of Pioneer 10 and 11”. Phys. Rev. D 65: 082004

    Article  ADS  Google Scholar 

  2. Bennett C.L. et al., (2003). “First-year wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results”. Astrophys. J. Suppl. 148, 1–27

    Article  ADS  Google Scholar 

  3. Bird R.B., Armstrong R.C., Hassager O., (1987). Dynamics of Polymeric Liquids, Vol.1. Fluid Mechanics. Wiley, New York

    Google Scholar 

  4. Bullough R.K. and Caudrey F., “Soliton and its history,” in Solitons, Bullough R.K. and Caudrey F., eds. (Springer, Berlin, 1980), pp. 11–77

  5. Cantrell W.H., (2001). “Commentary on Maxwell’s equations and special relativity theory”. Infin. Energy 7(38): 12–18

    Google Scholar 

  6. Christov C.I., “Discrete out of continuous: dynamics of phase patterns in continua,” in Continuum Models and Discrete Systems—Proceedings of CMDS8, K. Markov, ed. (World Scientific, Singapore, 1996), pp. 370–394

  7. Christov C.I., (2001). “On the analogy between the Maxwell electromagnetic field and the elastic continuum”. Annu. Univ. Sofia 95, 109–121

    Google Scholar 

  8. Christov C.I., “Dynamics of patterns on elastic hypersurfaces. Part I. Shear waves in the middle surface; Part II. Wave mechanics of flexural quasi-particles,” in ISIS International Symposium on Interdisciplinary Science Proceedings, Natchitoches, October 6–8, 2004 (AIP Conference Proceedings 755, Washington DC, 2005), pp. 46–60

  9. Christov C.I., “Maxwell–Lorentz electrodynamics as manifestation of the dynamics of a viscoelastic metacontinuum,” Math. Comput. Simul. Submitted.

  10. Christov C.I., Jordan P.M., (2005). “Heat conduction paradox involving second sound propagation in moving media”. Phys. Rev. Lett. 94: 154301

    Article  ADS  Google Scholar 

  11. Corey B.E., Wilkinson D.T., (1976). “A measurement of the cosmic microwave background anysotropy at 19GHz”. Bull. Astron. Astrophys. Soc. 8, 351

    ADS  Google Scholar 

  12. Dunning-Davies J., (2005). “A re-examination of Maxwell’s electromagnetic equations”. Prog. Phys. 3, 48–50

    MathSciNet  Google Scholar 

  13. Einstein A., (1961). Relativity. The Special and the General Theory. Three Rivers Press, New York

    MATH  Google Scholar 

  14. Gill T.P., (1965). The Doppler Effect. Logos Press, London

    Google Scholar 

  15. Griffiths D.J., (1981). Introduction to Electrodynamics, 2nd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  16. Hertz H., (1900). Electric Waves. MacMillan, London

    Google Scholar 

  17. Hinton C.H., in Speculations on the Fourth Dimension. Selected Writings of Hinton C.H., B R.V.. Rucker, ed. (Dover, New York, 1980).

  18. Jackson J.D., (1975). Classical Electrodynamics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  19. Jordan P.M., Puri A., (2005). “Revisiting Stokes first problem for Maxwell fluids”. Mech Q.J.. Appl. Math. 58(2): 213–227

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalutza T.,“Zum unitatsproblem der physik,” Sitz. Preuss. Acad. Wiss. S966 (1921).

  21. Klein O., (1926). “Quantentheorie und fünfdimensionale relativitätstheorie”. Z. Phy. 37, 895–906

    Article  ADS  Google Scholar 

  22. Landau L.D., Lifschitz M.E., (2000). The Classical Theory of Fields, 4th edn. Reed Educational and Professional Publishing, New York

    Google Scholar 

  23. LeBellac M., Lévy-Leblond J.-M., (1973). “Galilean electromagnetism”. Il Nuovo Cimento 14B(2): 217–233

    Google Scholar 

  24. Lorentz H.A., (1952). The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat, 2nd edn. Dover, New York

    Google Scholar 

  25. Lovelock D., Rund H., (1989). Tensors, Differential Forms, and Variational Principles. Dover, New York

    Google Scholar 

  26. Maxwell J.C., (1865). “A dynamical theory of the electromagnetic field”. Philos. Trans. R. Soc. Lond. 155, 469–512

    Google Scholar 

  27. Maxwell J.C. (1867).“On the dynamical theory of gases”. Philos. Trans. R. Soc. Lond. 157, 49–88

    Google Scholar 

  28. Newell A.C., (1985). Solitons in Mathematics and Physics. SIAM, Philadelphia

    Google Scholar 

  29. Oldroyd J.G., (1949). “On the formulation of rheological equations of state”. Proc. R. Soc. A 200, 523–541

    MathSciNet  ADS  Google Scholar 

  30. Phipps T.E., Jr, (1986). Heretical Verities: Mathematical Themes in Physical Description. Classic Non-Fiction Library, Urbana, IL

    Google Scholar 

  31. Pots E.J., (1997). Formal Structure of Electromagnetics General Covariance and Electromagnetics. Dover, Mineola

    Google Scholar 

  32. Purcell E.M., (1965). Electricity and Magnetism. McGraw-Hill, New York

    Google Scholar 

  33. Renshaw C., “Explanation of the anomalous Doppler observations in Pioneer 10 and 11,” in Aerospace Conference, 1999. Proc. IEEE 2, 59–63 (1999). Digital Object Identifier 10.1109/AERO.1999.793143.

  34. Schrödinger E., (1950). Space–Time Stucture. Cambridge Univeristy Press, Cambridge, MA

    Google Scholar 

  35. Smoot G.F., Gorenstein M.V., Miller R.A., (1977). “Detection of anisotropy in the cosmic blackbody radiation”. Phys. Rev. Lett. 39, 898–901

    Article  ADS  Google Scholar 

  36. Triffeault J.-L., (2001). “Covariant time derivative for dynamical systems”. J. Phys. A: Math. Gen. 34: 5875–5885

    Article  ADS  Google Scholar 

  37. Truesdell C. and Noll W., “The non-linear field theories of mechanics,” in Encyclopedia of Physics, S. Függe, ed. Vol. III/3 (Springer, Berlin, 1965).

  38. van Dantzig D., (1934). “The fundamental equations of electromagnetism, independent of metrical geometry”. Proc. Camb. Philos. Soc. 30, 421–427

    Article  MATH  Google Scholar 

  39. Whittaker E., (1989). A History of the Theories of Aether & Electricity, Vol 1. Dover, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christo I. Christov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christov, C.I. On the Material Invariant Formulation of Maxwell’s Displacement Current. Found Phys 36, 1701–1717 (2006). https://doi.org/10.1007/s10701-006-9075-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9075-7

Keywords

Navigation