Skip to main content
Log in

Explaining the Unobserved—Why Quantum Mechanics Ain’t Only About Information

  • Published:
Foundations of Physics Aims and scope Submit manuscript

A remarkable theorem by Clifton et al [Found Phys. 33(11), 1561–1591 (2003)] (CBH) characterizes quantum theory in terms of information-theoretic principles. According to Bub [Stud. Hist. Phil. Mod. Phys. 35 B, 241–266 (2004); Found. Phys. 35(4), 541–560 (2005)] the philosophical significance of the theorem is that quantum theory should be regarded as a “principle” theory about (quantum) information rather than a “constructive” theory about the dynamics of quantum systems. Here we criticize Bub’s principle approach arguing that if the mathematical formalism of quantum mechanics remains intact then there is no escape route from solving the measurement problem by constructive theories. We further propose a (Wigner-type) thought experiment that we argue demonstrates that quantum mechanics on the information-theoretic approach is incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler S., (2003). “Why decoherence has not solved the measurement problem: a response to P W Anderson”. Stud. Hist. Phil. Mod. Phys. 34B: 135–142

    Article  Google Scholar 

  2. Adler S., (2005).“Stochastic collapse and decoherence of a non-dissipative forced harmonic oscillator”. J. Phys. A 38, 2729–2760

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. S. Adler, A. Bassi, and E. Ippoliti, “Towards quantum superpositions of a mirror: an exact open systems analysis—calculational details”, J. Phys. A 38, 2715 (2005).

    Google Scholar 

  4. Aharonov Y., Albert D., (1981). “Can we make sense of the measurement process in quantum mechanics?”. Phys. Rev. Lett. D 24, 359–370

    ADS  Google Scholar 

  5. Albert D., (1983). “On quantum mechanical automata”. Phys. Lett. A 98, 249–252

    Article  ADS  Google Scholar 

  6. D. Albert, “The quantum mechanics of self–measurement,” in Complexity, Entropy and the Physics of Information, W.H. Zurek (ed.) (Addison-Wesley, New York, 1990),

  7. Balashov Y., Janssen M., (2003). “Presentism and relativity”. Brit. J. Phil. Sci. 54, 327–346

    Article  Google Scholar 

  8. Bassi A., Adler S., Ippoliti E.,(2005a). “Towards quantum superpositions of a mirror: an exact open systems analysis”. Phys. Rev. Lett. 94, 030401

    Article  MathSciNet  ADS  Google Scholar 

  9. A Bassi, E. Ippoliti, and B. Vacchini, “On the energy increase in space-collapse models”, http://xxx.lanl.gov/abs/quant-ph/0506083 (2005b).

  10. Bell J.S., (1987). Speakable And Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  11. Bell J.S., (1990). “Against ‘measurement”’. Phys. World 8, 33–40

    Google Scholar 

  12. H. Brown, “Michelson, FitzGerald and Lorentz: the origins of relativity revisited”, http://philsci-archive.pitt.edu/archive/00000987 (2003).

  13. Brown H., (2006).Physical Relativity. Oxford University Press, Oxford

    MATH  Google Scholar 

  14. H. Brown, and C. Timpson, “Why special relativity should not be a template for a fundamental reformulation of quantum mechanics”, http://xxx.lanl.gov/abs/quant-ph/0601182 (2006).

  15. Bub J., (1997). Interpreting the Quantum World. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Bub J., (2000). “Quantum mechanics as a principle theory”. Stud. Hist. Phil. Mod. Phys. 31B, 75–94

    Google Scholar 

  17. Bub J., (2004). “Why the Quantum?”. Stud. Hist. Phil. Mod. Phys. 35B, 241–266

    Article  MathSciNet  Google Scholar 

  18. Bub J., (2005). “Quantum theory is about quantum information”, Found. Phys. 35(4): 541–560

    MATH  MathSciNet  Google Scholar 

  19. Clifton R., Bub J., Halvorson H., (2003). “Characterizing quantum theory in terms of information–theoretic constraints”. Found. Phys. 33(11): 1561–1591

    Article  MathSciNet  Google Scholar 

  20. Caves C., Fuchs C., Schack R.,(2002). “Unknown quantum states: the quantum de Finetti representation”. J. Math. Phys. 43: 4537

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Diosi L., (1989).“Models for universal reduction of macroscopic quantum fluctuations”. Phys. Rev. A 40, 1165–1174

    Article  ADS  Google Scholar 

  22. Dürr D., Goldstein S., Zanghi N., (1992). “Quantum equilibrium and the origin of absolute uncertainty”. J. Stat. Phys. 67(5/6): 843–907

    Article  MATH  ADS  Google Scholar 

  23. A. Einstein, “Time, Space, and Gravitation,” Times (London), 13–14, 28 November 1919. Reprinted as “What is the theory of relativity?” In Ideas and Opinions, A. Einstein (ed.) (Bonanza, New York, 1954), pp. 227–232.

  24. C. Fuchs, “Quantum mechanics as quantum information (and a little more),” http://xxx.lanl.gov/abs/quant-ph/0205039 (2002).

  25. Fuchs C., Peres A., (2002) “Quantum theory needs no interpretation”. Phys. Today 3, 70–71

    MATH  Google Scholar 

  26. G. C. Ghirardi, “Beyond conventional quantum mechanics,” in Quantum Reflections, J. Ellis and D. Amati, eds. (Cambridge University Press, Cambridge, 2000), pp.

  27. Ghirardi G.C., Rimini A., Weber T., (1980). “A general argument against superluminal transmission through the quantum mechanical measurement process”. Lett. Nuovo. Cim. 27, 293–298

    MathSciNet  Google Scholar 

  28. Ghirardi G.C., Rimini A., Weber T., (1986). “Unified dynamics for microscopic and macroscopic systems”. Phys. Rev. D 34, 470–479

    Article  MathSciNet  ADS  Google Scholar 

  29. Gisin N., (1989).“Stochastic quantum dynamics and relativity”. Helv. Phys. Acta. 62, 363–371

    MathSciNet  Google Scholar 

  30. Hagar A., (2003). “A philosopher looks at quantum information theory,” Phil. Sci. 70(3): 752–775

    MathSciNet  Google Scholar 

  31. Harman P.M., (2001). The natural philosophy of James Clerk Maxwell. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Hemmo M., Shenker O., (1971). “Quantum decoherence and the approach to equilibrium”. Stud. Hist. Phil. Mod. Phys. 36B, 626–648 (2005).

    Google Scholar 

  33. Jánossy L., (1971) Theory of Relativity Based on Physical Reality. Akadémiai Kiadó, Budapest

    Google Scholar 

  34. Joos E. et al., (2003). Decoherence and the Appearance of a Classical World. Springer, Berlin

    MATH  Google Scholar 

  35. Nilsen M.A., Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. I. Pitowsky, "Quantum mechanics as a theory of probability," http://xxx.lanl.gov/abs/ quant-ph/0510095 (2005).

  37. Schrödinger E., (1936). “Probability relations between separated systems”. Proc. Cam. Phil. Soc. 32, 446–452

    Article  MATH  Google Scholar 

  38. Simon C., Buzek V., Gisin N., (2001). “No–signaling condition and quantum dynamics”. Phys. Rev. Let 87, 170405–170408

    Article  ADS  Google Scholar 

  39. C. Timpson, “Quantum information theory and the foundations of quantum mechanics” (Ph.D. Dissertation, Oxford University), http://xxx.lanl.gov/abs/quant-ph/0412063 (2004).

  40. A. Valentini, “Subquantum information and computation,” http://xxx.lanl.gov/abs quant-ph/0203049 (2002).

  41. ZurekW.H., (1991). “Decoherence and the transition from quantum to classical”. Phys. Today 44, 36–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Hagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagar, A., Hemmo, M. Explaining the Unobserved—Why Quantum Mechanics Ain’t Only About Information. Found Phys 36, 1295–1324 (2006). https://doi.org/10.1007/s10701-006-9065-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9065-9

Keywords

Navigation