Skip to main content
Log in

Time Travel and the Reality of Spontaneity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Contrary to the informed consensus, time travel implies spontaneity (as distinct from chance) so that time travel can only be of the second kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Thorne, in: General Relativity and Gravitation 1992, R. J. Gleiser, C. N. and O. M. Moreschi, eds. (Institute of Physics, Bristol, 1993) pp. 294–315; K. S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy (Norton, , 1994); M. S. Morris and K. S. Thorne, Amer. J. Phys. 56, 395–412 M. S. Morris, K. S. Thorne, and U. Yurtserver, Phys. Rev. Lett. 61, 1446 (1988); and K.S. Thorne, Phys. Rev. D 44, 4735–4737 (1991).

  2. Price R.H. (1993). Amer. J. Phys. 61, 216–217

    Article  ADS  Google Scholar 

  3. Gott J.R. III, (1991). Phys. Rev. Lett. 66, 1126–1129

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Hawking S.W. (1992). Phys. Rev. D 46, 603–611

    Article  MathSciNet  ADS  Google Scholar 

  5. Instantaneous transfer of information at superluminal speeds naturally does not contradict the theory of relativity, which only requires that the speed of light should be constant in any local Lorentz frame. The usual assertion of a conflict between the two implicitly assumes ‘causality’ which is not quite applicable under the circumstances.

  6. Contrary to the claims made in the current literature, the Wheeler-Feynman absorber theory may not be used for this purpose since it is internally inconsistent, while the Hoyle-Narlikar absorber theory may not be used since it is externally inconsistent. See, C. K. Raju, J. Phys. A: Math. Gen. 13 3303–3317 (1980).

  7. C. K. Raju, Time: Towards a Consistent Theory (Kluwer Academic, Dordrecht, 1994). Since retarded interactions dominate, one may still distinguish between forward and backward directions of time.

  8. For this purpose, various subtle distinctions such as the distinction between Wellsian and Gödelian forms of time travel do not seem critical. See, John Earman, ‘Recent work on time travel.’ In: Time’s Arrows Today. S. F. Savitt, ed. (Cambridge University Press, Cambridge, 1995).

  9. The presentation is adapted from D. Lewis, in The Philosophy of Time, R. L. Poidevin and M. Macbeath, eds. (Oxford University Press, Oxford, 1993), pp. 134–146.

  10. Woodward J.F. (1995). Found. Phys. Lett. 8, 1–39

    Article  MathSciNet  Google Scholar 

  11. In the sense of temporal logic, see, e.g., N. Rescher and A. Urquhart, Temporal Logic (Springer, Wien, 1973); W. H. Newton Smith, The Structure of Time (Routledge & Kegan Paul, London, 1980).

  12. Popper K.R. (1982), The Open Universe: an Argument for Indeterminism, Post Script to The Logic of Scientific Discovery, Vol. 2 Hutchinson, London, pp. 58n–59n

    Google Scholar 

  13. Hawking S.W., Ellis G.F.R. (1973) The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge, p. 183

    Google Scholar 

  14. A number of differing ‘non-standard’ views have, however, been documented by , Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction (American Institute of Physics, New York, 1993).

  15. See, K. R. Popper cited in Note 12 above. The original discussion was in K. R. , Nature 177, 538 (1956); 178, 382 (1956); 179, 297 (1957); 181, 402 (1958).

  16. Alexander Aphrodisiensis, De fato, 192, 6, cited in S. Sambursky, Physics of the Stoics (Routledge & Kegan Paul, London, 1987), p. 57.

  17. Benford G.A., Book D.L., Newcomb W.A. (1970). Phys. Rev. D 2, 263–265

    Article  ADS  Google Scholar 

  18. Szilard L., Z. Phys. 53, 840 (1929); L. Brillouin, J. Appl. Phys. 22, 334 (1951).

  19. Misner C.W., Thorne K.S., Wheeler J.A. (1978). Gravitation. Freeman, San Francisco

    Google Scholar 

  20. C. K. Raju, ‘Simulating a Tilt in the Arrow of Time: Preliminary Results.’ Paper presented at a Seminar on ‘Some Aspects of Theoretical Physics’, Indian Statistical Institute, Calcutta, 14–15 May 1996.

  21. Raju C.K. (2004). “The Electrodynamic Two-Body Problem and the Origin of Quantum Mechanics”. Found. Phys. 34, 937–962

    Article  MATH  MathSciNet  Google Scholar 

  22. Hairer E., Norsett S.P., Wanner G. (1987). Solving Ordinary Differential Equations.Vol. 8 (Springer Series in Computational Mathematics) Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Raju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raju, C.K. Time Travel and the Reality of Spontaneity. Found Phys 36, 1099–1113 (2006). https://doi.org/10.1007/s10701-006-9056-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9056-x

Keywords

Navigation