Foundations of Physics

, 36:1070 | Cite as

A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi

  • Jerzy Król

We analyse the proposition that the spacetime structure is modified at short distances or at high energies due to weakening of classical logic. The logic assigned to the regions of spacetime is intuitionistic logic of some topoi. Several cases of special topoi are considered. The quantum mechanical effects can be generated by such semi-classical spacetimes. The issues of: background independence and general relativity covariance, field theoretic renormalization of divergent expressions, the existence and definition of path integral measures, are briefly discussed in the proposal. The connection with some problems in foundations of mathematics and differential topology are also discussed.


topos theory spacetime structure intuitionism functional measures quantum mechanics 


  1. 1.
    Asselmeyer T. (1997). “Generation of source terms in general relativity by differential structures”. Class. Quant. Grav. 14, 749–758MathSciNetCrossRefADSMATHGoogle Scholar
  2. 2.
    Asselmeyer-Maluga T., Brans C.H. (2002). “Cosmological anomalies and exotic smoothness structures”. Gen. Rel. Grav. 34(10): 1767–1771MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    T. Asselmeyer-Maluga and H. Rosé, “Differential structures-the geometrization of quantum mechanics,” e-print gr-qc/0511089.Google Scholar
  4. 4.
    Barr M. (1974). “Toposes without points”. J. Pure Appl. Alg. 5, 265MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bell J.L. (1985). Boolean-valued Models and Independence Proofs in Set Theory, 2nd edn. Oxford University, OxfordMATHGoogle Scholar
  6. 6.
    Bell J.L. (1985). “Orthospaces and quantum logic”. Found. Phys. 15(12): 1179–1202MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Bell J.L. (1986). “From absolute to local mathematics”. Synthese 69, 409–426MathSciNetCrossRefGoogle Scholar
  8. 8.
    Benioff P., “Models of ZF set theory as carriers for the mathematics of physics I, II,” J. Math. Phys. 19, 618, 629 (1976).Google Scholar
  9. 9.
    P. Benioff, “Language is physical,” Quantum Inf. Proc. 1, 4495, e-print quant-ph/0210211 (2002).Google Scholar
  10. 10.
    Benioff P. (2002). “Towards a coherent theory of physics and mathematics”. Found. Phys. 32, 989–1029MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brans C.H., Randall D. (1993). “Exotic differentiable structures and general relativity”. Gen. Rel. Grav. 25, 205MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Carlip S. (2001). “Quantum gravity: a progress report”. Rept. Prog. Phys. 64, 885MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Davis M. (1976). “A relativity principle in quantum mechanics”. Int. J. Theor. Phys. 16(11): 867–874CrossRefGoogle Scholar
  14. 14.
    de Witt-Morette C. (1974). “Feynman path integrals. I. Linear and affine transformations, II. The Feynman Green’s functions”. Comm. Math. Phys. 37, 63MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Fourman M.P., Hyland J.M.E. (1979), Sheaf Models for Analysis. (Lecture Notes in Mathematics 753), Springer, Berlin, pp. 302–401Google Scholar
  16. 16.
    A.K. Guts, “Axiomatic relativity theory,” Uspekhi Mat. Nauk 37(2), 39–79 (1982); Russian Math. Survey 37(2), 41–89 (1982).Google Scholar
  17. 17.
    A. K. Guts and E. B. Grinkevich, “Toposes in general theory of relativity,” e-print gr-qc/9610073 (1996).Google Scholar
  18. 18.
    A. Heyting, Intuitionism, An Introduction, 3rd edn. (North Holland, New York, 1971).Google Scholar
  19. 19.
    Isham C.J. (2000). “Some possible role for topos theory in quantum theory and quantum gravity”. Found. Phys. 30(10): 1707–1735MathSciNetCrossRefGoogle Scholar
  20. 20.
    Isham C.J., Butterfield J. (1998). “A topos perspective on the Kochen-Specker theorem: I. Quantum states as generalized valuations”. Int. J. Theor. Phys. 37, 2669–2733MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Isham C.J., Butterfield J. (1999). “A topos perspective on the Kochen-Specker theorem: II. Conceptual aspects and classical analogues”. Int. J. Theor. Phys. 38, 827–859MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Jech T. (2003). Set Theory. Springer, Berlin, Heildelberg, New YorkMATHGoogle Scholar
  23. 23.
    Johnstone P.T. (2002). Sketches of an Elephant. A Topos Theory Compendium. Clarendon, OxfordGoogle Scholar
  24. 24.
    Kaku M. (1993). Quantum Field Theory. A Modern Introduction. Oxford University Press, New York, OxfordGoogle Scholar
  25. 25.
    Król J. (2001). “Formal languages and model theoretic perspectives in physics”. Acta Phys. Pol. B 32(11): 3855ADSGoogle Scholar
  26. 26.
    Król J. (2004). “Background independence in quantum gravity and forcing constructions”. Found. Phys. 34(3): 361–403MathSciNetCrossRefMATHADSGoogle Scholar
  27. 27.
    Król J. (2004). “Exotic smoothness and noncommutative spaces. The model-theoretical approach”. Found. Phys. 34(5): 843–869MathSciNetCrossRefMATHADSGoogle Scholar
  28. 28.
    J. Król, “Model theory and the AdS/CFT correspondence,” e-print hep-th/0506003 (2005).Google Scholar
  29. 29.
    Lambek J., Scott P.J. (1994). Introduction to Higher Order Categorical Logic. Cambridge University, CambridgeGoogle Scholar
  30. 30.
    Lawvere F.W. (1975). “Continuously Variable Sets; Algebraic Geometry=Geometric Logic”. Logic Coll. 73, 135MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mac Lane S., Moerdijk I. (1992). Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Springer, New YorkMATHGoogle Scholar
  32. 32.
    Moerdijk I., Reyes G.E. (1991). Models for Smooth Infinitesimal Analysis. Springer, New YorkMATHGoogle Scholar
  33. 33.
    H. Pfeiffer, “Quantum general relativity and the classification of smooth manifolds,” e-print gr-qc/0404088 (2004).Google Scholar
  34. 34.
    Scedrov A. (1986). “Diagonalization of continuous matrices as a representation of intuitionistic reals”. Ann. P. Appl. Logic 30, 201MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    D. Scott, “Boolean models and nonstandard analysis,” in Applications of Model Theory to Algebra, Analysis, and Probability, W. A. J. Luxemburg, ed. (Holt, Reinehart, Winston, New York, 1969).Google Scholar
  36. 36.
    Sikorski R., Rasiowa H. (1963). The Mathematics of Metamathematics. PWN, WarszawaMATHGoogle Scholar
  37. 37.
    Sładkowski J. (2001). “Gravity on exotic R 4’s with few symmetries”. Int. J. Mod. Phys. D10, 311ADSGoogle Scholar
  38. 38.
    Takeuti G. “Two applications of logic to mathematics”. Math. Soc. Jpn 13, Kano Memorial Lec. 3 (1978).Google Scholar
  39. 39.
    G. Takeuti, Boolean Valued Analysis, Fourman, Malvey, Scott, eds. (Lect. Notes Math. 753, Applications of Sheaves, Springer, Heildelberg, 1979), p. 714.Google Scholar
  40. 40.
    G. Takeuti, “Quantum logic and quantization,” in Foundations of Quantum Mechanics in the Light of New Technologies (Tokyo, 1983), (Phys. Soc. Japan, Tokyo, 1984) pp. 256–260.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations