Foundations of Physics

, Volume 36, Issue 4, pp 546–562 | Cite as

The Wigner Function as Distribution Function

  • M. RevzenEmail author

Some entangled states have nonnegative Wigner representative function. The latter allow being viewed as a distribution function of local hidden variables. It is argued herewith that the interpretation of expectation values using such distribution functions as local hidden variable theory requires restrictions pertaining to the observables under study. The reasoning lead to support the view that violation of Bell’s inequalities that is always possible for entangled states hinges not only on the states involved but also whether the dynamical variables have their values defined even when they cannot be measured.


Bell’s inequality local hidden variables phase space Wigner function distribution function dispersive variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell J.S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, p. 196Google Scholar
  2. 2.
    M. Revzen, P. Mello, A. Mann, and L. Johanson, Phys. Rev. A 71, 022103 1–11 (2005).Google Scholar
  3. 3.
    Bell J.S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, p. 14Google Scholar
  4. 4.
    Einstein A., Podolsky B., Rosen N. (1935). Phys. Rev. 47:777CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Wigner E.P. (1932). Phys. Rev. 40:749CrossRefADSzbMATHGoogle Scholar
  6. 6.
    Leonhardt U. (1997). Measuring the Quantum State of Light. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Clauser J.F., Shimony A. (1978). Rep. Prog. Phys. 41:1881CrossRefADSGoogle Scholar
  8. 8.
    Khanna F.C., Mann A., Revzen M., Roy S. (2002). Phys. Lett. A 294:1CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Yurke B., Potasek M. (1987). Phys. Rev. A 36:3464CrossRefADSGoogle Scholar
  10. 10.
    K. Banaszek and K. Wodkiewicz, Phys. Rev. A 58, 4345 (1998); Phys. Rev. Lett. 82, 2009 (1999).Google Scholar
  11. 11.
    M. Revzen, in Recent Developments in Quantum Physics, Feb. 1–2 (Conference in honor of Asher Peres’s 70th birthday, Technion, Haifa, Israel, 2004).Google Scholar
  12. 12.
    Clauser J.F., Horne M.A., Shimony A., Holt R.A. (1969). Phys. Rev. Lett. 23:880CrossRefADSGoogle Scholar
  13. 13.
    Braunstein S.L., Mann A., Revzen M. (1992). Phys. Rev. Lett. 68:3259CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Johansen L.M. (1997). Phys. Lett. A 236:173CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Reid M.D., Walls D.F. (1986). Phys. Rev. A 34:1260CrossRefADSGoogle Scholar
  16. 16.
    Walls D.F., Milburn G.J. (1994). Quantum Optics. Springer, BerlinzbMATHGoogle Scholar
  17. 17.
    Grangier P., Potasek M.J., Yurke B. (1988). Phys. Rev. A 38:3132CrossRefADSGoogle Scholar
  18. 18.
    Kuzmich A., Walmsley I.A., Mandel L. (2002). Phys. Rev. Lett. 85:1349CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Ou Z.Y., Pereira S.F., Kimble H.J. (1992). Phys. Rev. Lett. 68:3663CrossRefADSGoogle Scholar
  20. 20.
    Ou Z.Y., Pereira S.F., Kimble H.J. (1992). App. Phys. B 55:265CrossRefADSGoogle Scholar
  21. 21.
    Casado A., Marshall T.W., Santos E. (1998). J. Opt. Soc. Am B 15:1572CrossRefADSGoogle Scholar
  22. 22.
    Zeng-Bing Chen, Jian-Wei Pan Guang Hou, and Yong-De Zhang, Phys. Rev. Lett. 88, 040406 (2002).Google Scholar
  23. 23.
    Cirelson B.S. (1980). Lett. Math. Phys. 4:93CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Landau L.J. (1987). Phys. Lett. A 120:54CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    In this limit the probability of an even parity state equals that of an odd parity state, cf. Eq. (37). It is for such a state that maximal BIQV is attainable; see, e.g., N. Gisin, Phys. Lett. A 154, 201 (1991).Google Scholar
  26. 26.
    Gour G., Khanna F.C., Mann A., Revzen M. (2004). Phys. Lett. A 324:415CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Examples of alternative domains were considered in J. A. Vaccaro and D. T. Pegg, Phys. Rev. A 41, 5156 (1990); G. S. Agarwal, D. Home, and W. Schleich, Phys. Lett. A 170, 359 (1992).Google Scholar
  28. 28.
    Wigner E.P. (1970). Am. J. Phys. 38:1005CrossRefADSGoogle Scholar
  29. 29.
    Sakurai J.J. (1985). Modern Quantum Mechanics, Revised Edition. Addison–Wesley, Reading, MA, p. 227Google Scholar
  30. 30.
    De Baere W., Mann A., Revzen M. (1999). Found Phys 29:67CrossRefMathSciNetGoogle Scholar
  31. 31.
    Revzen M., Lokajicek M., Mann A. (1997). Quant. Semiclas Opt 9:501CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Stapp H. (2004). Am. J. Phys. 72:30CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Laloë F. (2001). Am. J. Phys. 69: 655CrossRefADSGoogle Scholar
  34. 34.
    Schleich W. (2001). Quantum Optics in Phase Space. Wiley-VCH, Berlin, p. 89zbMATHGoogle Scholar
  35. 35.
    R. L. Hudson, Rep. Math. Phys. 6, 249 (1974); W. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001), p. 74.Google Scholar
  36. 36.
    M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1772 (1971); J. G. Krüger and A. Poffyn, Physica A 91, 99 (1978).Google Scholar
  37. 37.
    A nondispersive dynamical variable is not necessarily a proper dynamical variable. The latter should be used as the requirement for hidden variable underpinning whenever distinction arises.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of PhysicsTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations