Skip to main content
Log in

The Wigner Function as Distribution Function

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Some entangled states have nonnegative Wigner representative function. The latter allow being viewed as a distribution function of local hidden variables. It is argued herewith that the interpretation of expectation values using such distribution functions as local hidden variable theory requires restrictions pertaining to the observables under study. The reasoning lead to support the view that violation of Bell’s inequalities that is always possible for entangled states hinges not only on the states involved but also whether the dynamical variables have their values defined even when they cannot be measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell J.S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, p. 196

    Google Scholar 

  2. M. Revzen, P. Mello, A. Mann, and L. Johanson, Phys. Rev. A 71, 022103 1–11 (2005).

  3. Bell J.S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, p. 14

    Google Scholar 

  4. Einstein A., Podolsky B., Rosen N. (1935). Phys. Rev. 47:777

    Article  ADS  MATH  Google Scholar 

  5. Wigner E.P. (1932). Phys. Rev. 40:749

    Article  ADS  MATH  Google Scholar 

  6. Leonhardt U. (1997). Measuring the Quantum State of Light. Cambridge University Press, Cambridge

    Google Scholar 

  7. Clauser J.F., Shimony A. (1978). Rep. Prog. Phys. 41:1881

    Article  ADS  Google Scholar 

  8. Khanna F.C., Mann A., Revzen M., Roy S. (2002). Phys. Lett. A 294:1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Yurke B., Potasek M. (1987). Phys. Rev. A 36:3464

    Article  ADS  Google Scholar 

  10. K. Banaszek and K. Wodkiewicz, Phys. Rev. A 58, 4345 (1998); Phys. Rev. Lett. 82, 2009 (1999).

    Google Scholar 

  11. M. Revzen, in Recent Developments in Quantum Physics, Feb. 1–2 (Conference in honor of Asher Peres’s 70th birthday, Technion, Haifa, Israel, 2004).

  12. Clauser J.F., Horne M.A., Shimony A., Holt R.A. (1969). Phys. Rev. Lett. 23:880

    Article  ADS  Google Scholar 

  13. Braunstein S.L., Mann A., Revzen M. (1992). Phys. Rev. Lett. 68:3259

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Johansen L.M. (1997). Phys. Lett. A 236:173

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Reid M.D., Walls D.F. (1986). Phys. Rev. A 34:1260

    Article  ADS  Google Scholar 

  16. Walls D.F., Milburn G.J. (1994). Quantum Optics. Springer, Berlin

    MATH  Google Scholar 

  17. Grangier P., Potasek M.J., Yurke B. (1988). Phys. Rev. A 38:3132

    Article  ADS  Google Scholar 

  18. Kuzmich A., Walmsley I.A., Mandel L. (2002). Phys. Rev. Lett. 85:1349

    Article  ADS  MathSciNet  Google Scholar 

  19. Ou Z.Y., Pereira S.F., Kimble H.J. (1992). Phys. Rev. Lett. 68:3663

    Article  ADS  Google Scholar 

  20. Ou Z.Y., Pereira S.F., Kimble H.J. (1992). App. Phys. B 55:265

    Article  ADS  Google Scholar 

  21. Casado A., Marshall T.W., Santos E. (1998). J. Opt. Soc. Am B 15:1572

    Article  ADS  Google Scholar 

  22. Zeng-Bing Chen, Jian-Wei Pan Guang Hou, and Yong-De Zhang, Phys. Rev. Lett. 88, 040406 (2002).

    Google Scholar 

  23. Cirelson B.S. (1980). Lett. Math. Phys. 4:93

    Article  ADS  MathSciNet  Google Scholar 

  24. Landau L.J. (1987). Phys. Lett. A 120:54

    Article  ADS  MathSciNet  Google Scholar 

  25. In this limit the probability of an even parity state equals that of an odd parity state, cf. Eq. (37). It is for such a state that maximal BIQV is attainable; see, e.g., N. Gisin, Phys. Lett. A 154, 201 (1991).

  26. Gour G., Khanna F.C., Mann A., Revzen M. (2004). Phys. Lett. A 324:415

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Examples of alternative domains were considered in J. A. Vaccaro and D. T. Pegg, Phys. Rev. A 41, 5156 (1990); G. S. Agarwal, D. Home, and W. Schleich, Phys. Lett. A 170, 359 (1992).

    Google Scholar 

  28. Wigner E.P. (1970). Am. J. Phys. 38:1005

    Article  ADS  Google Scholar 

  29. Sakurai J.J. (1985). Modern Quantum Mechanics, Revised Edition. Addison–Wesley, Reading, MA, p. 227

    Google Scholar 

  30. De Baere W., Mann A., Revzen M. (1999). Found Phys 29:67

    Article  MathSciNet  Google Scholar 

  31. Revzen M., Lokajicek M., Mann A. (1997). Quant. Semiclas Opt 9:501

    Article  ADS  MathSciNet  Google Scholar 

  32. Stapp H. (2004). Am. J. Phys. 72:30

    Article  ADS  MathSciNet  Google Scholar 

  33. Laloë F. (2001). Am. J. Phys. 69: 655

    Article  ADS  Google Scholar 

  34. Schleich W. (2001). Quantum Optics in Phase Space. Wiley-VCH, Berlin, p. 89

    MATH  Google Scholar 

  35. R. L. Hudson, Rep. Math. Phys. 6, 249 (1974); W. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001), p. 74.

  36. M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1772 (1971); J. G. Krüger and A. Poffyn, Physica A 91, 99 (1978).

  37. A nondispersive dynamical variable is not necessarily a proper dynamical variable. The latter should be used as the requirement for hidden variable underpinning whenever distinction arises.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Revzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revzen, M. The Wigner Function as Distribution Function. Found Phys 36, 546–562 (2006). https://doi.org/10.1007/s10701-005-9037-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9037-5

Keywords

Navigation