Advertisement

Foundations of Physics

, Volume 36, Issue 4, pp 465–476 | Cite as

Phonon Superfluids in Sets of Trapped Ions

  • D. PorrasEmail author
  • J. I. Cirac
Article

Abstract

We show that transverse phonons in a set of trapped ions under the action of lasers are described by an interacting boson model whose parameters can be externally adjusted. If the radial trapping frequency is large enough, the system is described by a Bose–Hubbard model, in which hopping of the phonons between different ions is provided by the Coulomb interaction. On the other hand, the non-linear terms in the interaction of the ions with a standing-wave provide us with the phonon–phonon interaction. We investigate the possibility of observing several quantum many—body phenomena, including (quasi)Bose–Einstein Condensation as well as a superfluid-Mott insulator quantum phase transition.

Keywords

trapped ions quantum phase transitions quantum simulation Bose-Einstein condensation superfluidity interacting bosons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meekhof D.M., Monroe C., King B.E., Itano W.M., Wineland D.J. (1996). Phys. Rev. Lett. 76:1796CrossRefADSGoogle Scholar
  2. 2.
    Leibfried D., Blatt R., Monroe C., Wineland D. (2003). Rev. Mod. Phys. 75:281CrossRefADSGoogle Scholar
  3. 3.
    A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 261 (1924); 3 (1925); S. N. Bose, Z. Phys. 26, 178 (1924).Google Scholar
  4. 4.
    Fisher M.P.A. et al (1989). Phys. Rev. B 40:546CrossRefADSGoogle Scholar
  5. 5.
    M. H. Anderson et al., Science 269, 198 (1995); K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).Google Scholar
  6. 6.
    Greiner M. et al. (2001). Nature (London) 415:39CrossRefADSGoogle Scholar
  7. 7.
    Jaksch D. et al. (1998). Phys. Rev. Lett 81:3108CrossRefADSGoogle Scholar
  8. 8.
    Cirac J.I., Zoller P. (1995). Phys. Rev. Lett. 74:4091CrossRefADSGoogle Scholar
  9. 9.
    Cirac J.I. et al. (1996). Adv. At. Mol. Opt. Phys. 37:237Google Scholar
  10. 10.
    D. J. Wineland et al., J. Res. NIST 103, 259 (1998); D. Leibfried et al., Phys. Rev. Lett. 89, 247901 (2002); S. Gulde et al., Nature (London) 421, 48 (2003); F. Schmidt-Kaler et al., Nature (London) 422, 408 (2003).Google Scholar
  11. 11.
    Ralph G. de Voe, Phys. Rev. A 65, 063407 (2002).Google Scholar
  12. 12.
    W. M. Itano et al., Science 279, 686 (1998); T. B. Mitchell et al., Science 282, 1290 (1998).Google Scholar
  13. 13.
    Dubin D.H.E., O’Neil T.M. (1999). Rev. Mod. Phys. 71:87CrossRefADSGoogle Scholar
  14. 14.
    A. Steane, Appl. Phys. B: Lasers Opt. 64, 623 (1997); D. F. V. James, Appl. Phys. B: Lasers Opt. 66, 181 (1998).Google Scholar
  15. 15.
    Marquet C. et al. (2003). Appl. Phys. B 76:199CrossRefADSGoogle Scholar
  16. 16.
    Note that contributions of the form x 2 z, contain terms that do not conserve the number of phonons in the x-direction. However, these terms can be eliminated in a wave approximation, provided that no resonances in the coupling between radial and axial modes occur. This is the case if \(\beta_x \ll 1\), as was shown in Ref. 13.Google Scholar
  17. 17.
    Sachdev S. (1999). Quantum Phase Transitions. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    C. Monroe et al., Phys. Rev. Lett. 75, 4011 (1995); Ch. Roos et al., Phys. Rev. Lett. 83, 4713 (1999).Google Scholar
  19. 19.
    D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).Google Scholar
  20. 20.
    Girardeau M. (1960). J Math Phys 1:516zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Paredes B. et al. (2004). Nature 429:277CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations