Skip to main content
Log in

Unitarity as Preservation of Entropy and Entanglement in Quantum Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The logical structure of Quantum Mechanics (QM) and its relation to other fundamental principles of Nature has been for decades a subject of intensive research. In particular, the question whether the dynamical axiom of QM can be derived from other principles has been often considered. In this contribution, we show that unitary evolutions arise as a consequences of demanding preservation of entropy in the evolution of a single pure quantum system, and preservation of entanglement in the evolution of composite quantum systems. 6

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987); Foundations of Quantum Mechanics since the Bell Inequalities, L. E. Ballentine, ed. (Amer. Assoc. Phys. Teachers, College Park, 1988), and references therein.

  2. Einstein A., Podolsky B., Rosen N. (1935) Phys. Rev. 47, 777

    Article  MATH  ADS  Google Scholar 

  3. Bell J.S. Physics 1, 195 (1964); J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).

  4. E. Santos, Phys. Rev. Lett. 66, 1388 (1991); Phys. Rev. A 46, 3646 (1992).

  5. P. M. Pearle, Phys. Rev. D 2, 1418 (1970); J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974); P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 49, 3209 (1994); N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999); S. Massar, S. Pironio, J. Roland, and B. Gisin, Phys. Rev. A 66, 052112 (2002); R. Garcia-Patron, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and Ph. Grangier, Phys. Rev. Lett. 93, 130409 (2004).

  6. Cohen-Tannoudji C., Diu B., Laloë F. (1977). Quantum Mechanics. John Wiley, NY and Hermann, Paris

    Google Scholar 

  7. Gleason A.M. (1957). J. Math. Mech. 6, 885

    MATH  MathSciNet  Google Scholar 

  8. Kochen S., Specker E.P. (1967). J. Math. Mech. 17, 59

    MATH  MathSciNet  Google Scholar 

  9. W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982); D. Dieks, Phys. Lett. A 92, 271 (1982); H. P. Yuen, Phys. Lett. A 113, 405 (1986).

    Google Scholar 

  10. D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos ed. (Kluwer Academic, Dordrecht, The Netherlands, 1989).

  11. Partovi M.H. (1989). Phys. Lett. A 137, 440

    Article  ADS  MathSciNet  Google Scholar 

  12. Hardy L. (1993). Phys. Rev. Lett. 71: 1665

    Article  PubMed  MATH  ADS  MathSciNet  Google Scholar 

  13. Olkiewicz R. (1999). Comm. Math. Phys. 208: 245

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. A. K. Pati and S. L. Braunstein, Nature 404, 131 (2000); ibid., quant-ph/0007121.

  15. Olkiewicz R. (2000). Ann. Phys. 286: 10

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. L. Hardy, quant-ph/0101012.

  17. Simon C., Bužek V., Gisin N. (2001). Phys. Rev. Lett. 87: 170405

    Article  PubMed  ADS  Google Scholar 

  18. Ferrero M., Salgado D., Sánchez-Gómez J.L. (2004). Phys. Rev. A 70, 014101

    Article  ADS  Google Scholar 

  19. A. Sen(De) and U. Sen, quant-ph/0401186, to appear in Phys. Rev. A.

  20. K. Dietz, J. Phys. A-Math. Gen. 35, 10573 (2002); ibid., 36, 5595 (2003); ibid., 36, L45 (2003).

  21. Caves C.M., Fuchs C.A., Manne K., Renes J.M. (2004) Found. Phys. 34: 193 and references therein.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Peres A. (1995) Quantum Theory: Concepts and Methods. Kluwer, Dordrecht, p. 278.

    MATH  Google Scholar 

  23. An antiunitary operator can be always written in the form \(U {\mathcal{C}}\), where U is a unitary operator and \({\mathcal {C}}\) is complex conjugation in the choosen basis.

  24. Welsh D. (1989). Codes and Cryptography. Clarendon Press, Oxford

    Google Scholar 

  25. Wehrl A. (1978). Rev. Mod. Phys. 50, 221

    Article  ADS  MathSciNet  Google Scholar 

  26. von Neumann J. (1927). Gött. Nachr. 1: 273

    Google Scholar 

  27. Wigner E.P. (1959). Group Theory. Academic Press, New York

    MATH  Google Scholar 

  28. Emch G., Piron C. (1963). J. Math. Phys. 4, 469

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Gisin N. (1993). Am. J. Phys. 61, 86

    Article  ADS  Google Scholar 

  30. There are many ways in which one can quantify entanglement. A partial list includes.(31)

  31. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996); V. Vedral, M. B. Plenio, M.A. Rippin, and P. L. Knight, Phys. Rev. Lett 78, 2275 (1997); D. P. DiVincenzo, C. A. Fuchs, H. Mabuchi, J. A. Smolin, A. Thapliyal, A. Uhlmann, quant-ph/9803033; T. Laustsen, F. Verstraete, and S. J. van Enk, QIC 3, 64 (2003); M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999); G. Vidal, J. Mod. Opt. 47, 355 (2000); D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 1455 (1999); M. Horodecki, A. Sen(De), and U. Sen, Phys. Rev. A 70, 052326 (2004); M. Horodecki, QIC 1, 7 (2001).

  32. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996); S. Popescu and D. Rohrlich, Phys. Rev. A 56, 3219 (1997); G. Vidal, J. Mod. Opt. 47, 355 (2000); M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 84, 2014 (2000).

    Google Scholar 

  33. Schmidt E. (1907). Math. Ann. 63, 433ff

    Article  MathSciNet  Google Scholar 

  34. M. Horodecki, R. Horodecki, A. Sen(De), and U. Sen, quant-ph/0306044; ibid., quant-ph/0407038.

  35. S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997); M. B. Plenio and V. Vedral, Cont. Phys. 39, 431 (1998); M. Horodecki and R. Horodecki, Phys. Lett. A 244, 473 (1998); P. Horodecki, M. Horodecki and R. Horodecki, Acta Phys. Slovaca 48, 141 (1998).

  36. See e.g., Ref. 37, p. 73.

  37. Huang K. (1987). Statistical Mechanics. Wiley, New York

    MATH  Google Scholar 

  38. Note that the usual statement of the Boltzmann H theorem is with the function H(t), without the minus sign.

  39. See e.g., Ref. 37, p. 62.

  40. E. A. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988); ibid. 68, 065027 (2003), and references therein.

  41. See e.g., Ref. 37, p. 64.

  42. Ref. 22, p. 267.

Download references

Author information

Authors and Affiliations

Authors

Additional information

We would also like to dedicate this work to the memory of Asher Peres, whose contributions and sharp comments guided the first steps of the present article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulpke, F., Poulsen, U.V., Sanpera, A. et al. Unitarity as Preservation of Entropy and Entanglement in Quantum Systems. Found Phys 36, 477–499 (2006). https://doi.org/10.1007/s10701-005-9035-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9035-7

Keywords

Navigation