Advertisement

Foundations of Physics

, Volume 36, Issue 4, pp 526–540 | Cite as

A Mathematical Characterization of Quantum Gaussian Stochastic Evolution Schemes

  • D. SalgadoEmail author
  • J. L. Sánchez-Gómez
  • M. Ferrero
Article
  • 50 Downloads

Abstract

We give a common mathematical characterization of relevant stochastic evolution schemes built up in the literatute to attack the quantum measurement problem. This characterization is based on two hypotheses, namely, (i) the trace conservation with probability one and (ii) the existence of a complex phase determining a linear support for the stochastic process driving the random evolution.

Keywords

measurement problem dynamical reduction models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    d’Espagnat B. (1976). Conceptual Foundations of Quantum Mechanics, 2nd comp. rev. and enl. edn. Addison-Wesley, New YorkGoogle Scholar
  2. 2.
    Santos E. (1991). “Does quantum mechanics violate the Bell inequalities”. Phys. Rev. Lett. 66: 1388CrossRefADSGoogle Scholar
  3. 3.
    Wheeler J.A., Zurek W.H. ed. (1983). Quantum Theory and Measurement. Princeton University Press, PrincetonGoogle Scholar
  4. 4.
    Cini M., Lévy-Leblond J.-M. ed. (1990). Quantum Theory without Reduction. Adam Hilger, New YorkGoogle Scholar
  5. 5.
    Peres A. (1993). Quantum Theory: Concepts and Methods. Kluwer Academic, DordrechtzbMATHGoogle Scholar
  6. 6.
    Bub J. (1999). Interpreting the Quantum World. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    de la Peña L., Cetto A.M. (1996). The Quantum Dice. An Introduction to Stochastic Electrodynamics. Kluwer Academic, DordrechtGoogle Scholar
  8. 8.
    Gisin N. (1984). “Quantum measurements and stochastic processes”. Phys. Rev. Lett. 52: 1657CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Ghirardi G.C., Rimini A., Weber T. (1986). “Unified dynamics for microscopic and macroscopic systems”. Phys. Rev. D 34, 470CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Pearle P. (1989). “Combining stochastic dynamical state-vector reduction with spontaneous localization”. Phys. Rev. A 39: 2277CrossRefADSGoogle Scholar
  11. 11.
    Ghirardi G.C., Pearle P., Rimini A. (1990). “Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles”. Phys. Rev. A 42, 78CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Diosi L. (1989). “Models for universal reduction of macroscopic quantum fluctuations”. Phys. Rev. A 40: 1165CrossRefADSGoogle Scholar
  13. 13.
    Gisin N., Percival I.C. (1992). “The quantum state diffusion model applied to open quantum systems”. J. Phys. A: Math. Gen. 25: 5677CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Pearle P. “Collapse models,” in Open Systems and Measurement in Relativistic Quantum Theory, F. Petruccione and H.P. Breuer, eds. (Springer, Berlin, 2000).Google Scholar
  15. 15.
    Percival I.C. (1998). Quantum State Diffusion. Cambridge University Press, CambridgezbMATHGoogle Scholar
  16. 16.
    Bassi A., Ghirardi G.-C. (2003). “Dynamical reduction models”. Phys. Rep. 379: 257CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Dalibard J., Castin Y., Molmer K. (1992). “Wave-function approach to dissipative processes in quantum optics”. Phys. Rev. Lett. 68, 580CrossRefADSGoogle Scholar
  18. 18.
    Gardiner C.W., Parkins A.S., Zoller P. (1992). “Wave-function quantum stochastic differential equations and quantum-jump simulation methods”. Phys. Rev. A 46: 4363CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Dum R., Parkins A.S., Zoller P., Gardiner C.W. (1992). “Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs”. Phys. Rev. A 46: 4382CrossRefADSGoogle Scholar
  20. 20.
    Adler S.L., Brody D.C., Brun T.A., Hughston L.P. (2001). “Martingale models for quantum state reduction”. J. Phys. A 34: 8795CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Dirac P.A.M. (1958). The Principles of Quantum Mechanics, 4th rev. edn. Clarendon Press, OxfordzbMATHGoogle Scholar
  22. 22.
    Øksendal B. (1998). Stochastic Differential Equations, 5th edn. Springer, BerlinGoogle Scholar
  23. 23.
    Hudson R.L., Parthasarathy K.R. (1984). “Quantum Ito’s formula and stochastic evolutions”. Commun. Math. Phys. 93: 301CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Belavkin V.P. (1989). “A continuous counting observation and posterior quantum dynamics”. J. Phys. A: Math. Gen. 22: L1109CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Parthasarathy K.R. (1992). An Introduction to Quantum Stochastic Calculus. Birkhäuser, BerlinzbMATHGoogle Scholar
  26. 26.
    G. W. Johnson and G. Kallianpur, “Stochastic Dyson series and the solution to associated stochastic evolution equations,” in Stochastic Analysis and Mathematical Physics, R. Rebolledo, ed., Proceedings of the 2nd Intl. Workshop (World Scientific, Singapore, 1996), p. 82.Google Scholar
  27. 27.
    Karatzas I., Shrève S.E. (1991). Brownian Motion and Stochastic Calculus, Graduate Text in Mathematics, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  28. 28.
    Bassi A., Ghirardi G.-C. (2002). “Dynamical reduction models with general gaussian noises”. Phys. Rev. A 65: 042114CrossRefADSGoogle Scholar
  29. 29.
    Gardiner C.W. (1995). Handbook of Stochastic Methods. Springer, BerlinGoogle Scholar
  30. 30.
    Lindblad G. (1976). “On the generators of quantum dynamical semigroups”. Commun. Math. Phys. 48: 119CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Alicki R., Lendi K. (1987). Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics 286 Springer, BerlinCrossRefzbMATHGoogle Scholar
  32. 32.
    Diosi L., Wiseman H.M. (2001). “Complete parameterization and invariance of diffusive quantum trajectories for Markovian open systems”. J. Chem. Phys. 268: 91CrossRefGoogle Scholar
  33. 33.
    Gisin N. (1989). “Stochastic quantum dynamics and relativity”. Helv. Phys. Acta 62: 363MathSciNetGoogle Scholar
  34. 34.
    Hughston L.P. (1996). “Geometry of stochastic state vector reduction”. Proc. R. Soc. Lond. A 452: 953ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Adler S.L., Horwitz L.P. (2000). “Structure and properties of Hughston’s stochastic extension of the Schrödinger equation”. J. Math. Phys. 41: 2485CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Gisin N. (1981). “A simple nonlinear dissipative quantum evolution equation”. J. Phys. A: Math. Gen. 14: 2259CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. Salgado
    • 1
    Email author
  • J. L. Sánchez-Gómez
    • 1
  • M. Ferrero
    • 2
  1. 1.Dpto. Física TeóricaUniversidad Autónoma de MadridMadridSpain
  2. 2.Dpto. FísicaUniversidad de OviedoOviedoSpain

Personalised recommendations