Foundations of Physics

, Volume 35, Issue 7, pp 1245–1262 | Cite as

Duality in Off-Shell Electromagnetism

  • Martin LandEmail author


In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five-dimensional U(1) gauge theory associated with Stueckelberg–Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five-dimensional theory prevents a natural generaliza tion of the Dirac monopole, since the theory is not symmetric under duality transforma tions. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.


duality magnetic monopoles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dirac, P.A.M. 1931Proc.R. Soc. A.11360ADSGoogle Scholar
  2. Saad, D., Horwitz, L.P., Arshansky, R.I. 1989Found. Phys.191126CrossRefMathSciNetGoogle Scholar
  3. Stueckelberg, E. C. G. 1941Helv. Phys. Acta.14322zbMATHMathSciNetGoogle Scholar
  4. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941);E. C. G. Stueckelberg, Helv. Phys. Acta 14, 588 (1941).Google Scholar
  5. Land, M. C., Shnerb, N., Horwitz, L. P. 1995J. Math. Phys.363263CrossRefADSMathSciNetGoogle Scholar
  6. V. A. Fock, Phys. Z. Sowjetunion 12, 404 (1937); R. P. Feynman, Phys. Rev. 80, 440 (1950); J. Schwinger, Phys. Rev. 82, 664 (1951); Y. Nambu, Prog. Theor. Phys. 5, 82 (1950); L. P. Horwitz and C. Piron, Helv. Phys. Acta 48, 316 (1973); R. Fanchi, Phys. Rev. D 20, 3108 (1979); A. Kyprianides, Phys. Rep. 155, 1 (1986).Google Scholar
  7. Arshansky, R., Horwitz L., P., Lavie, Y. 1983Found. Phys.131167CrossRefGoogle Scholar
  8. Hestenes, D. 1966Space-Time Alge braGordon & BreachNew YorkGoogle Scholar
  9. M. Pavsic, The Landscape of Theoretical Physics: A Global View (Kluwer Academic, Dordrecht, 2001); T. Ive zić, "The Proof that the Stan dard Transformations of E and B are not the Lorentz Transformations. Clifford Algebra Formalism”, Scholar
  10. M. C. Land, The Clifford Algebra Over Rn unpublished undergraduate thesis, 1977.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Computer ScienceHadassah CollegeJerusalemIsrael

Personalised recommendations