Advertisement

Foundations of Physics

, Volume 35, Issue 7, pp 1205–1244 | Cite as

On the Unification of Geometric and Random Structures through Torsion Fields: Brownian Motions, Viscous and Magneto-fluid-dynamics

  • Diego L. RapoportEmail author
Article

Abstract

We present the unification of Riemann–Cartan–Weyl (RCW) space-time geometries and random generalized Brownian motions. These are metric compatible connections (albeit the metric can be trivially euclidean) which have a propagating trace-torsion 1-form, whose metric conjugate describes the average motion interaction term. Thus, the universality of torsion fields is proved through the universality of Brownian motions. We extend this approach to give a random symplectic theory on phase-space. We present as a case study of this approach, the invariant Navier–Stokes equations for viscous fluids, and the kinematic dynamo equation of magnetohydrodynamics. We give analytical random representations for these equations. We discuss briefly the relation between them and the Reynolds approach to turbulence. We discuss the role of the Cartan classical development method and the random extension of it as the method to generate these generalized Brownian motions, as well as the key to construct finite-dimensional almost everywhere smooth approximations of the random representations of these equations, the random symplectic theory, and the random Poincaré–Cartan invariants associated to it. We discuss the role of autoparallels of the RCW connections as providing polygonal smooth almost everywhere realizations of the random representations.

Keywords

Brownian motions Riemann–Cartan–Weyl connections: trace-torsion electromagnetism autoparallels Navier–Stokes equations kinematic dynamo turbulence Reynolds decomposition stochastic differential equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes (North-Holland/Kodansha, Amsterdam/Tokyo, 1981).Google Scholar
  2. 2.
    Malliavin, P. 1978Géométrie Différentielle StochastiqueLes Presses UniversityMontrealGoogle Scholar
  3. 3.
    Rapoport, D. L. 2002Rep. Math. Phys.49127zbMATHMathSciNetGoogle Scholar
  4. 4.
    D. L. Rapoport, In Proceedings, Third Inter. Conf. on Dynamical Systems and Differential Equations, Kennesaw, May 2000, Discrete and Cont. Dyn. Sys. special issue, S. Hu (ed.), 2000.Google Scholar
  5. 5.
    Rapoport, D. L. 2002Rep. Math. Phys.50211250zbMATHMathSciNetGoogle Scholar
  6. 6.
    Rapoport, D. L. 2003Rand. Oper. Stoch. Eqs.11109136zbMATHMathSciNetGoogle Scholar
  7. 7.
    D. L. Rapoport, Rand. Oper. Stoch. Eqs. 11(2), 359–380 (2003); ibid. in Instabilities and Nonequilibrium Structures vol. VII & VIII, O. Descalzi, J. Martinez and E. Tirapegui (eds.), 313–332, Complex Phenomenae and Nonlinear Systems Series (Kluwer, Dordrecht, 2004).Google Scholar
  8. 8.
    Kunita, K. 1994Stochastic Flows and Stochastic Differential EquationsCambridge Univ PressCambridgeGoogle Scholar
  9. 9.
    Baxendale, P., Elworthy, K. D. 1983Z.Wahrschein.verw.Gebiete65245267Google Scholar
  10. 10.
    Arnold, V. I., Khesin, B. A. 1999Topological Methods in HydrodynamicsSpringerNew YorkGoogle Scholar
  11. 11.
    Bismut, J. M. 1982Mécanique AnalytiqueSpringerBerlinLecture Notes in Mathematics 866Google Scholar
  12. 12.
    K. D. Elworthy, In Diffusion Processes and Related Problems in Analysis, M. Pinsky et al. (eds.), vol. II, (Birkhauser, Basel, 1992).Google Scholar
  13. 13.
    Elworthy, K.D., Li, X. M 1994J. Func. Anal.125252286CrossRefMathSciNetGoogle Scholar
  14. 14.
    V. I. Arnold, Mathematical Methods in Classical Mechanics (Springer, 1982).Google Scholar
  15. 15.
    M. Taylor, Partial Differential Equations, vols. I & III (Springer,1995).Google Scholar
  16. 16.
    M. Ghill and S. Childress, Stretch, Twist and Fold (Springer, 1995).Google Scholar
  17. 17.
    Ebin, D., Marsden, J. 1971Ann. Math.92102163MathSciNetGoogle Scholar
  18. 18.
    Moffatt, H. K., Ricca, R. L. 1992Procds. Roy. London.439411429ADSMathSciNetGoogle Scholar
  19. 19.
    Marmanis, H. 1998Phys. Fluids.101028CrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Einstein, Annalen Phys. 17 (1905); J. Perrin, C. R. Acad. Sci. Paris 147, 475 and 530 (1908); ibid. Ann. de Chim. et de Phys. 18, 1 (1909); M. Smoluchowski, Ann. der Phys. 21, 756 (1906).Google Scholar
  21. 21.
    Rapoport, D., Rodrigues, W., Souza, Q., Vaz, J. 1994Alg. Groups. Geom.1427Google Scholar
  22. 22.
    Wenzelburger, J. 1998J. Geom. Phys.24334352CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Kleinert, H. 1989The Gauge Theory of Defects, vols. I and IIWorld ScientificSingaporeGoogle Scholar
  24. 24.
    Rapoport, D 1995Aizawa, Y eds. Dynamical Systems and Chaos Proceedings(Tokyo, 1994)World ScientificSingapore7377Google Scholar
  25. 25.
    D. Rapoport, in Instabilities and Non-Equilibrium Structures, vol. VI, 359–370, Proceedings (Valparaíso, Chile, December 1995), E. Tirapegui and W. Zeller (eds.), Series in Nonlinear Phenomenae and Complex Systems (Kluwer, Boston, 2000); ibid. in Instabilities and Nonequilibrium Structures, vol. IX O. Descalzi, J. Martinez and S. Rica (eds.), 259–270, Nonlinear Phenomenae and Complex Systems (Kluwer, 2004).Google Scholar
  26. 26.
    R. W. Sharpe, Differential Geometry, Cartan’s Generalization of the Erlangen Program (Springer, 2000).Google Scholar
  27. 27.
    D. Rapoport, in Group XXI, Physical Applications and Mathematical Aspects of Algebras, Groups and Geometries, vol. I, Proceedings (Clausthal, 1996), H.D. Doebner et al. (eds.), (World Scientific, Singapore, 1997); ibid. 8(1), 129–146, (1998); ibid. in Gravitation, The Space-Time Structure, Proceedings of the Eighth Latinoamerican Symposium in Relativity and Gravitation, Aguas de Lindoia, Brasil , 220–229, W. Rodrigues and P.~Letelier (eds.) (World Scientific, Singapore, 1995); ibid. Proceedings of the IXth Marcel Grossman Meeting in Relativity, Gravitation and Field Theories, Rome, June 2000, R. Ruffini et al. (eds.) (World Scientific, Singapore, 2003).Google Scholar
  28. 28.
    V. de Sabbata, and C. Sivaram, Spin and Torsion in Gravitation (World Scientific, Singapore,1991); F. Hehl, J. Dermott McCrea, E. Mielke, and Y. Ne’eman, Phys. Rep. 258, 1–157, 1995.Google Scholar
  29. 29.
    Z. Schuss, Theory and Applications of Stochastic Differential Equations (Academic Press, Wiley, New York, 1990); C. Gardiner, Handbook of Stochastic Processes,and its applications to Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics (Springer,New York/Berlin, 1991); R. Mazo, Brownian Motion, Fluctuations, Dynamics and its Applications (Clarendon Press, Oxford, 2002); N.G. .Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981); H. Risken, The Fokker–Planck Equation: Methods of Solutions and Applications, 2nd edn. (Springer, New York, 1989).Google Scholar
  30. 30.
    Rham, G. 1984Differentiable ManifoldsSpringerNew YorkGoogle Scholar
  31. 31.
    Arnold, V. I. 1966Ann.Inst. Fourier16319361zbMATHGoogle Scholar
  32. 32.
    Yu. Gliklikh, Global Analysis in Mathematical Physics, Applied Mathematics Sciences 122, (Springer, Berlin, 1997); ibid. Ordinary and Stochastic Differential Geometry as a Tool for Mathematical-Physics, (Kluwer, Dordrecht, 1996); ibid. Viscous Hydrodynamics through stochastic perturbations of flow of perfect fluids on groups of diffeomorphisms, Proceedings of the Voronezh State University (Russia), 1, 83–91, 2001.Google Scholar
  33. 33.
    Taylor, T. 1993Stochastic and Stochastic Rep.43179197zbMATHMathSciNetGoogle Scholar
  34. 34.
    D. Rapoport and S. Sternberg, Ann. Phys. 158, 447 (1984); ibid., N. Cimento 80A, 371 (1984); S. Sternberg, Ann. Phys. 162, 85 (1985).Google Scholar
  35. 35.
    D. Rapoport, in Trends on Partial Differential Equations of Mathematical Physics (Conference in Honor of Prof. V.A.Solonnikov, Obidos, Portugal, June 2003), 225–241, J. F. Rodrigues et al. (eds.), Birkhauser Progress in Nonlinear Differential Equations and Their Applications, vol. 61 (Birkhauser, Boston, 2004.)Google Scholar
  36. 36.
    D. Rapoport, Int. J. Theor. Phys. 35(10) 2127–2152, (1987); b. 30(1) 1, 1497 (1991); c. 35(2), 287 (1996)Google Scholar
  37. 37.
    Stueckelberg, EC. 1941Helv Phys Acta.14322588zbMATHMathSciNetGoogle Scholar
  38. 38.
    L. P. Horwitz and C. Piron, Helv. Phys. Acta66, 694, (1993); L. P. Horwitz and N. Shnerb, Found. Phys.28, 1509 (1998).Google Scholar
  39. 39.
    J. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer, 1993); M. Trump and W. Schieve, Classical Relativistic Many-Body Dynamics(Kluwer, 1994).Google Scholar
  40. 40.
    Lesieur,  1994La TurbulencePresses Univ.GrenobleGoogle Scholar
  41. 41.
    Durrett, R. 1984Martingales and AnalysisWordsworthBelmont (California)Google Scholar
  42. 42.
    O. Oron and L. Horwitz, Found. Phys., IARD (2004, special issue); ibid. Phys. Letts. A 280, 265 (2001); ibid. Found. Phys. 31 951 (2001) and 33 1323 (2003) and 33 1177 (2003); ibid. in Progress in General Relativity and Quantum Cosmology Research, V. Dvoeglazov (ed.), (Nova Science, Hauppage, 2004); L. Horwitz, N. Katz and O. Oron, to appear in Discrete Dyn. Nature Soc. 2004).Google Scholar
  43. 43.
    Sh. Sklarz and L. Horwitz, Relativistic Mechanics and Continuous Media, to appear.Google Scholar
  44. 44.
    Hestenes, D., Sobczyck, G. 1984Clifford Calculus to Geometric CalculusD ReidelDordrechtGoogle Scholar
  45. 45.
    Prigogine, I. 1995From Being to BecomingFreemanNew YorkGoogle Scholar
  46. 46.
    H. Weyl, Space, Time and Matter (Dover (reprinted), New York, 1952).Google Scholar
  47. 47.
    Elworthy, K.D., Yan, Y., Xue, M. Li 2000On the Geometry of Diffusion Operators and Stochastic FlowsSpringerBerlinSpringer Lecture Notes in Mathematics 1704Google Scholar
  48. 48.
    A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gel’fand and Triplets, Lecture Notes in Physics 348, (Springer, Berlin, 1989); A. Jaffe and J. Glimm, Quantum Physics: The Functional Integral point of view, (Springer, 1982); P. Cartier and Cecile de Witt Morette, J. Math. Phys. 41(6) 4154 (2000); D. Rapoport and M. Tilli, Hadronic J. 10, 25–34 (1987).Google Scholar
  49. 49.
    P. Malliavin,Stochastic Analysis, (Springer Verlag, 1999); L. Schwartz, Second order Differential Geometry, Semimartingales and Stochastic Differential Equations on a Smooth Manifold, Lecture Notes in Mathematics 921 (Springer, 1978); P. Meyer, Géometrie Stochastique sans Larmes, in Séminaire des Probabilites XVI, supplement, Lecture Notes in Mathematics 921 (Springer, Berlin, 165–207 (1982).Google Scholar
  50. 50.
    Stroock, D., Varadhan, S.V.S. 1984Multidimensional Diffusion ProcessesSpringerBerlinGoogle Scholar
  51. 51.
    E. B. Dynkin, Soviet Math. Dokl. 9(2), 532–535, (1968); Ya. I. Belopolskaya and Yu.L. Dalecki, Stochastic Processes and Differential Geometry (Kluwer, Dordrecht, 1989); S. A. Molchanov, Russian Math. Surveys30, 1–63 (1975).Google Scholar
  52. 52.
    E. Nelson, Quantum Fluctuations, (Princeton University Press, New Jersey, 1985). Stochastic Processes in Classical and Quantum Systems, Lecture Notes in Physics 262, (Springer, 1986); F. Guerra and P. Ruggiero, Lett. Nuovo Cimento 23, 529 (1978); F. Guerra and P. Ruggiero, Phys. Rev. Letts. 31, 1022 (1973); D. Dohrn and F. Guera, Lett. Nuovo Cimento 22, 121 (1978); E. Aldovandri, D. Dohrn and F. Guerra, J. Math. Phys. 31 (3), 639 (1990).Google Scholar
  53. 53.
    Morato, L. M., Petroni, N.C. 2000J. Phys. A .3358335848ADSMathSciNetGoogle Scholar
  54. 54.
    D. Hestenes, J. Math. Phys. 14, 893–905 (1973); 15, 1768–1777 (1974); 15, 1778–1786 (1974); 16, 556–572 (1975); Found. Phys.15, 63–87 (1985).Google Scholar
  55. 55.
    T. Hida, Brownian Motion (Springer Verlag, 1980).Google Scholar
  56. 56.
    Kleinert, H. 1991Path integrals in Quantum Mechanics, Statistics and Polymer PhysicsWorld ScientificSingaporeGoogle Scholar
  57. 57.
    Grabert, H., Hanggi, P., Talkner, P. 1979Phys Rev A.1924402445CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    K. L. Chung and J. P. Zambrini, Introduction to Random Time and Quantum Randomness, 2nd edn. (World Scientific, 2003); A. B. Cruzeiro, Wu Liming and J.~P.~Zambrini, in Stochastic Analysis and Mathematical Physics, ANESTOC ’98 (Santiago, Chile), R. Rebolledo (ed.), (World Scientific, Singapore, 2004).Google Scholar
  59. 59.
    S. Pope, Turbulent Flows (Cambridge University Press, 2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathsFIUBA, University of Buenos Aires, DCyT-UNQArgentina

Personalised recommendations