Foundations of Physics

, Volume 35, Issue 7, pp 1181–1203 | Cite as

Relativistic Brownian Motion and Gravity as an Eikonal Approximation to a Quantum Evolution Equation

  • O. Oron
  • L. P. HorwitzEmail author


We solve the problem of formulating Brownian motion in a relativistically covariant framework in 3+1 dimensions. We obtain covariant Fokker–Planck equations with (for the isotropic case) a differential operator of invariant d’Alembert form. Treating the spacelike and timelike fluctuations separately in order to maintain the covariance property, we show that it is essential to take into account the analytic continuation of “unphysical” fluctuations.


relativity Brownian motion gravity eikonal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Ann. der Physik 17, 549–560 (1905). See also R. Furth, Investigation of the Theory of Brownian Movement (Dutton, N.Y. 1956).Google Scholar
  2. 2.
    R. Brown, Philosophical Magazine N.S. 4, 161–173 (1828). see also Philosophical Magazine N.S. 6, 161–166, (1829).Google Scholar
  3. 3.
    E. Nelson, Phys. Rev. 150, 1079–1085 (1966). see also E. Nelson, Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, 1967).Google Scholar
  4. 4.
    E. Nelson, Quantum Fluctuations (Princeton University Press, Princeton 1985). see also Ph. Blanchard, Ph. Combe and W. Zheng, Mathematical and Physical Aspects of Stochastic Mechanics (Springer-Verlag, Heidelberg, 1987), for further helpful discussion.Google Scholar
  5. 5.
    Morato, L., Viola, L. 1995J. Math. Phys.3646914710CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Einstein, A., Podolsky, B., Rosen, N. 1935Phys. Rev.47777780CrossRefADSGoogle Scholar
  7. 7.
    O. Oron and L. P. Horwitz, Gravitation, Cosmology, Relativity (to be published).Google Scholar
  8. 8.
    E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941); 14, 588 (1941).Google Scholar
  9. 9.
    Horwitz, L.P., Piron, C. 1973Helv. Phys. Acta.46316Google Scholar
  10. 10.
    Wiener, N. 1923J. Math. Phys.2131174Google Scholar
  11. 11.
    Nelson, E. 1967Dynamical Theories of Brownian MotionPrinceton University PressPrincetonGoogle Scholar
  12. 12.
    Langevin, P. 1908C.R.A.S Paris146530534zbMATHGoogle Scholar
  13. 13.
    Smoluchwosky, M.V. 1916Phys. Zeits.17557571Google Scholar
  14. 14.
    Schweber, S.S. 1961An Introduction to Relativistic Quantum Field TheoryHarper and RowNew YorkGoogle Scholar
  15. 15.
    Itzykson, C., Zuber, J.B. 1980Quantum Field TheoryMcGraw HillNew YorkGoogle Scholar
  16. 16.
    Feller, W. 1968An Introduction to Probability Theory and its Applications I and IIJohn WileyNew YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityRamat AvivIsrael

Personalised recommendations