Foundations of Physics

, Volume 35, Issue 7, pp 1149–1179 | Cite as

Classical and Quantum Radiation Reaction for Linear Acceleration

  • Atsushi HiguchiEmail author
  • Giles D. R. Martin


We investigate the effect of radiation reaction on the motion of a wave packet of a charged scalar particle linearly accelerated in quantum electrodynamics (QED). We give the details of the calculations for the case where the particle is accelerated by a static potential that were outlined in Higuchi and Martin Phys. Rev. D 70 (2004) 081701(R) and present similar results in the case of a time-dependent but space-independent potential. In particular, we calculate the expectation value of the position of the charged particle after the acceleration, to first-order in the fine structure constant in the ℏ→ 0 limit, and find that the change in the expectation value of the position (the position shift) due to radiation reaction agrees exactly with the result obtained using the Lorentz-Dirac force in classical electrodynamics for both potentials.


radiation reaction quantum electrodynamics Lorentz-Dirac semiclassical approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, M., Becker, R. 1933Theorie der ElektrizitätSpringerLeipzigVol. II.Google Scholar
  2. 2.
    Lorentz , H.A. 1952Theory of ElectronsDoverNew YorkGoogle Scholar
  3. 3.
    Dirac, P.A.M. 1938Classical theory of radiating electronsProc. R. Soc. Lond.A167148ADSGoogle Scholar
  4. 4.
    E. Poisson , An introduction to the Lorentz-Dirac equation, ArXiv:gr-qc/9912045.Google Scholar
  5. 5.
    C. Teitelboim, Splitting of the Maxwell tensor–radiation reaction without advanced fields, Phys. Rev. D 1, 1572 (1970); Splitting of the Maxwell tensor. II. Sources, 3, 297 (1971); Radiation reaction as a retarded self-interaction, 4, 345 (1971).Google Scholar
  6. 6.
    Jackson, J.D. 1975Classical ElectrodynamicsWileyNew YorkGoogle Scholar
  7. 7.
    Rohrlich, F. 1965Classical Charged ParticlesAddison-Wesley PublishingMassachusettsGoogle Scholar
  8. 8.
    Landau, L.D., Lifshitz, E.M. 1962The Classical Theory of FieldsPergammonOxfordGoogle Scholar
  9. 9.
    A. Higuchi, Radiation reaction in quantum mechanics, arXiv:quant-ph/9812036.Google Scholar
  10. 10.
    A. Higuchi, Radiation reaction in quantum field theory, Phys. Rev. D 66, 105004 (2002); 69, 129903(E) (2004), arXiv:quant-ph/0208017.Google Scholar
  11. 11.
    A. Higuchi and G. D. R. Martin, Lorentz-Dirac force from QED in linear acceleration, arXiv:quant-ph/0407162, Phys. Rev. D 70, 081701(R) (2004).Google Scholar
  12. 12.
    E. J. Moniz and D. H. Sharp, Absence of runaways and divergent self-mass in nonrelativistic quantum electrodynamics, Phys. Rev. D 10, 1133, (1974); Radiation reaction in non-relativistic quantum electrodynamics, 15, 2850, (1977).Google Scholar
  13. 13.
    Johnson, P.R., Hu, B.L. 2002Stochastic theory of relativistic particles moving in a quantum field: scalar Abraham-Lorentz-Dirac-Langevin equation, radiation reaction, and vacuum fluctuationsPhys. Rev.D 65065015ArXiv: quant-ph/0101001.ADSGoogle Scholar
  14. 14.
    Krivitskiî, V.S., Tsytovich, V.N. 1991Average radiation-reaction force in quantum electrodynamicsSov. Phys. Usp.34250Google Scholar
  15. 15.
    Newton, T.D., Wigner, E.P. 1949Localized states for elementary systemsRev. Mod. Phys.21400CrossRefADSGoogle Scholar
  16. 16.
    L. P. Horwitz, Time and evolution of states in relativistic classical and quantum mechanics, ArXiv: hep-ph/9606330, IASSNS-HEP-96/59.Google Scholar
  17. 17.
    Shankar, R. 1994Principles of Quantum MechanicsPlenumNew York435438Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkHeslingtonU.K.

Personalised recommendations