Foundations of Physics

, Volume 35, Issue 7, pp 1117–1147 | Cite as

Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

  • Philip R. JohnsonEmail author
  • B. L. Hu


We present a stochastic theory for the nonequilibriurn dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action, which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle’s worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.


radiation reaction Unruh effect quantum electrodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Johnson, Ph.D. thesis, University of Maryland, College Park, 1999 (unpublished).Google Scholar
  2. 2.
    P. R. Johnson and B. L. Hu, Stochastic theory of relativistic particles moving in a quantum field: influence functional and Langevin equation [quant-ph/0012137].Google Scholar
  3. 3.
    E. B. Davies, The Quantum Theory of Open Systems (Academic, London, 1976); U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993).Google Scholar
  4. 4.
    A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983); Ann. Phys. (N.Y.) 149, 374 (1983); A. J. Leggett et al. Rev. Mod. Phys. 59, 1 (1987); V. Hakim and V. Ambegaokar, Phys. Rev. A 32, 423 (1985); F. Haake and R. Reibold, Phys. Rev. A 32, 2462 (1985); H. Grabert, P. Schramm, and G. L. Ingold, Phys. Rep. 168, 115 (1988); B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992); D 47, 1576 (1993).Google Scholar
  5. 5.
    R. Feynman and F. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963); R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  6. 6.
    J. Schwinger, J. Math. Phys. 2, 407 (1961); L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)]; G. Zhou, Z.B. Su, B. Hao, and L. Yu, Phys. Rep. 118, 1 (1985); Z.B. Su, L. Y. Chen, X.T. Yu, and K.C. Chou, Phys. Rev. B 37, 9810 (1988); B. S. DeWitt, in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Claredon, Oxford, 1986); R. D. Jordan, Phys. Rev. D 33, 444 (1986); E. Calzetta and B. L. Hu, Phys. Rev. D 35, 495 (1987); 37, 2878 (1988); 49, 6636 (1994); A. Campos and E. Verdaguer, Phys. Rev. D 49, 1861 (1994).Google Scholar
  7. 7.
    B. L. Hu and Y. Zhang, Coarse-graining, scaling, and inflation University of Maryland Preprint 90-186 (1990); B. L. Hu, in Relativity and Gravitation: Classical and Quantum, Proc. SILARG VII, Cocoyoc, Mexico 1990. J. C. D’ Olivo et al. eds. (World Scientific, Singapore, 1991); Sukanya Sinha and B. L. Hu, Phys. Rev. D 44, 1028 (1991); F. Lombardo and F. D. Mazzitelli, Phys. Rev. D 53, 2001 (1996).Google Scholar
  8. 8.
    Calzetta, E. A., Hu, B.-L., Mazzitelli, F. D. 2001Phys. Rep.352459520[hep-th/0102199].CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. O. Barut and I. H. Duru, Phys. Rev. 172, 1 (1989); M.J. Strassler, Nucl. Phys. B 385, 145 (1992); D.G.C. McKeon, Ann. Phys. (N.Y.) 224, 139 (1993); M.J. Schmidt and C. Schubert, Phys. Rev. Lett. 331, 69 (1994); Phys. Lett. B 318, 438 (1993); H. Kleinert, Path Integrals in Quantum Mechanics, Statistical and Polymer Physics (World Scientific, London, 1995); D. Fliegner, M. G. Schmidt, and C. Schubert, Nucl. Phys. B 51C, 174 (1996); J. Jalilian-Marian et al., Phys. Rev. D 62, 045020 (2000); R. Venugopalan and J. Wirstam, Phys. Rev. D 63, 125022 (2001).Google Scholar
  10. 10.
    Johnson, P.R., Hu, B.L. 2002Phys. Rev.65065015Google Scholar
  11. 11.
    Unruh, W.G. 1976Phys. Rev.143251ADSGoogle Scholar
  12. 12.
    DeWitt, B.S. 1975Phys Rep.D 19297ADSGoogle Scholar
  13. 13.
    B. L. Hu, in Proceedings of the Third International Workshop on Thermal Fields and its Applications, CNRS Summer Institute, Banff, August 1993, R. Kobes and G. Kunstatter, eds. (World Scientific, Singapore, 1994) [gr-qc/9403061]; Yuhong Zhang, Ph.D. Thesis, University of Maryland 1990 (unpublished).Google Scholar
  14. 14.
    S. A. Ramsey and B. L. Hu, Phys. Rev. D 56, 678 (1997); S. A. Ramsey, B. L. Hu, and A. M. tylianopoulos, Phys. Rev. D 57, 6003 (1998).Google Scholar
  15. 15.
    Gell-Mann, M., Hartle, J. B. 1993Phys. RevD 473345ADSMathSciNetGoogle Scholar
  16. 16.
    R. B. Griffths, J. Stat. Phys. 36, 219 (1984); R. Omnés, J. Stat Phys. 53, 893, 933, 957 (1988); Ann. Phys. (NY) 201, 354 (1990); Rev. Mod. Phys. 64, 339 (1992); The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994); M. Gell-Mann and J. B. Hartle, in Complexity, Entropy and the Physics of Information, W. H. Zurek, ed. (Addison- Wesley, Reading, 1990); J. B. Hartle, Quantum mechanics of closed systems in Directions in General Relativity Vol. 1, B. L. Hu, M. P. Ryan, and C. V. Vishveswara, eds. (Cambridge University, Cambridge, 1993).Google Scholar
  17. 17.
    P. W. Milonni, The Quantum Vacuum (Academic, San Diego, 1994); F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, MA, 1965).Google Scholar
  18. 18.
    M. Abraham and R. Becker, Electricity and Magnetism (Blackie, London, 1937); H. A. Lorentz, The Theory of Electrons (Dover, New York, 1952), pp. 49 and 253; P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938).Google Scholar
  19. 19.
    N. V. Kampen, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 26 (1951); E. Moniz and D. Sharp, Phys. Rev. D 10, 1133 (1974); H. Levine, E. Moniz, and D. Sharp, Am. J. Phys. 45, 75 (1977); J. Wheeler and R. Feynman, Rev. Mod. Phys. 17, 157 (1945); F. E. Low, Ann. Phys. 266, 274 (1998); V. Krivitskii and V. Tsytovich, Sov. Phys. Usp. 34, 250 (1991).Google Scholar
  20. 20.
    H. Callen and T. Welton, Phys. Rev. 83, 34 (1951); H. Mori, Prog. Theor. Phys. 33, 423 (1965); G. W. Ford, M. Kac, and P. Masur, J. Math. Phys. 6, 504 (1965); H. Haken, Rev. Mod. Phys. 80, 67 (1975); H. Dekker, Phys. Rep. 80, 1 (1981).Google Scholar
  21. 21.
    G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985); Phys. Rev. A 37, 4419 (1988); G. W. Ford and R. F. O’Connell, Phys. Lett. A 157, 217 (1991); Phys. Lett. A 174, 182 (1993); G. W. Ford and R. F. O’Connell, Phys. Rev. A 57, 3112 (1998).Google Scholar
  22. 22.
    L. Diósi, Found. Phys. 20, 63 (1990); P.M.V.B. Barone and A.O. Caldeira, Phys. Rev. A 43, 57 (1991); L. H. Ford, Phys. Rev. D 47, 5571 (1993); Phys. Rev. A 56, 1812 (1997); H-P. Breuer and F. Petruccione, in Relativistic Quantum Measurement and Decohernce, H-P. Breuer and F. Petruccione, eds. (Springer-Verlag, Berlin, Germany, 2000).Google Scholar
  23. 23.
    For reviews see, e.g., B. L. Hu and E. Verdaguer, Stochastic gravity: A primer with applications, Class. Quant. Grav. 20 (2003) R1-R42 [gr-qc/0211090]; Stochastic gravity: theory and applications, in Living Reviews in Relativity 7 (2004) 3; article number lrr-2004-3 [grqc/ 0307032].Google Scholar
  24. 24.
    B. L. Hu, P. R. Johnson, and A. Roura, Some conceptual issues in self-consistent backreaction problems, (in preparation).Google Scholar
  25. 25.
    S. W. Hawking, Nature 248, 30 (1974); Com. Math. Phys. 43, 199 (1975).Google Scholar
  26. 26.
    Raval, A., Hu, B. L., Anglin, J. 1996Phys. RevD 537003ADSGoogle Scholar
  27. 27.
    Hu, B. L., Raval, A. 2001Is there radiation in Unruh effect?Chen, Pisin eds. Quantum Aspects of Beam PhysicsWorld ScientificSingapore18th Advanced IFCA Deam Dynamics Workship, [quant-ph/0012135]Google Scholar
  28. 28.
    Raval, A., Hu, B. L., Koks, D. 1997Phys Rev.D 554795ADSGoogle Scholar
  29. 29.
    Hu, B. L., Johnson, P. R. 2001Beyond Unruh effect: nonequilibrium quantum dynamics of moving chargesChen, Pisin eds. Quantum Aspects of Beam PhysicsWorld ScientificSingapore18th Advanced IFCA Deam Dynamics WorkshipGoogle Scholar
  30. 30.
    Chen, P., Tajima, T. 1999Phys. Rev. Lett.83256ADSGoogle Scholar
  31. 31.
    Unruh, W. G. 1992Phys Rev.D 463271ADSMathSciNetGoogle Scholar
  32. 32.
    Massar, S., Parentani, R. 1996From vacuum fluctuations to radiation. I. Accelerated detectorsPhys. Rev.D 5474267443ADSGoogle Scholar
  33. 33.
    Gabriel, Cl., Spindel, Ph., Massar, S., Parentani, R. 1998Interacting charged particles in an electric field and the Unruh effectPhys. Rev.D 5764966510ADSGoogle Scholar
  34. 34.
    Romero, L.D., Paz, J.P. 1997Phys. Rev.A 554070ADSGoogle Scholar
  35. 35.
    S-Y. Lin pointed out (private communication) that the factors involving żμφext were missing in Ref 10. These factors didn’t play a role in the specific application treated in Ref. 10, but are necessary for the full consistency of the equations of motion. We thank him for this observation.Google Scholar
  36. 36.
    Landau, L.D., Liftshitz, E.M. 1975Classical Theory of FieldsPergamonNew YorkGoogle Scholar
  37. 37.
    Aguirregabiria, J.M. 1997J. Phys. A. Math. Gen.302391CrossRefADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    L. P. Horwitz, (private communication).Google Scholar
  39. 39.
    Paz, J.P., Sinha, S. 1992Phys. Rev.452823ADSMathSciNetGoogle Scholar
  40. 40.
    B. L. Hu, General relativity as geometro-hydrodynamics, Invited talk at the Second Sakharov Conference, Moscow, May, 1996 [gr-qc/9607070].Google Scholar
  41. 41.
    Anastopoulos, C. 2001Quantum correlation functions and the classical limitPhys. Rev.63125024ADSMathSciNetGoogle Scholar
  42. 42.
    Calzetta, E., Roura, A., Verdaguer, E. 2003Stochastic description of quantum open systemsPhysica.319188212[quant-ph/0011097].MathSciNetGoogle Scholar
  43. 43.
    Anglin, J.R. 1993Phys. Rev.D 474525ADSGoogle Scholar
  44. 44.
    Cooper , Fred, Habib, Salman, Kluger, Yuval, Mottola, Emil, Pablo Paz, Juan 1994Phys Rev.5028482869ADSGoogle Scholar
  45. 45.
    Ya. Zel’dovich and A. Starobinsky, Zh. Eksp. Teor. Fiz 61, 2161 (1971) [Sov. Phys.- JETP 34, 1159 (1971)]; B. L. Hu and L. Parker, Phys. Rev. D 17, 933 (1978); F. V. Fischetti, J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1757 (1979); J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1772 (1979); P. A. Anderson, Phys. Rev. D 28, 271 (1983); 29, 615 (1984); E. Calzetta and B. L. Hu,Phys. Rev. D 35, 495 (1987); A. Campos and E. Verdaguer, Phys. Rev. D 49, 1861 (1994).Google Scholar
  46. 46.
    E. Calzetta and B. L. Hu, Correlations, decoherence, disspation and noise in Quantum Field Theory, in Heat Kernel Techniques and Quantum Gravity, S. Fulling, ed. (Texas A & M Press, College Station, 1995) [hep-th/9501040]; E. Calzetta and B. L. Hu, Phys. Rev. D 61, 025012 (2000).Google Scholar
  47. 47.
    A. Roura and E. Verdaguer, in preparation (2005).Google Scholar
  48. 48.
    C. Schubert, Perturbative quantum field theory in the String-inspired formalism Phy. Rep. 355 (2001) 73-234; Z. Bern and D. A. Kosower, Phys. Rev. Lett. 66, 1669 (1991).Google Scholar
  49. 49.
    M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge University, Cambridge, 1990); E. Witten, Phys. Today 49, 24 (1996); J. Polchinsky, Superstring Theory (Cambridge University Press, Cambridge, 1998).Google Scholar
  50. 50.
    Hu, B. L. 2002A kinetic theory approach to quantum gravityIntl J Theor Phys.4121112138[gr-qc/0204069].Google Scholar
  51. 51.
    Chen, Pisin 2001Quantum Aspects of Beam PhysicsWorld-ScientificSingaporeProceedings of the Capri Workshop, Oct. 2000Google Scholar
  52. 52.
    Bastianelli, F., Zirotti, A. 2002Nucl. Phys.B 642372ADSMathSciNetGoogle Scholar
  53. 53.
    Chad Galley and B. L. Hu, Stochastic self-force from radiation reaction in curved spacetime, (in preparation).Google Scholar
  54. 54.
    Chad Galley, B. L. Hu, and S.Y. Lin, Electromagnetic and gravitational radiation reaction equations from stochastic field theory, in preparation.Google Scholar
  55. 55.
    Alsing, P. M., Milburn, G. J. 2003Teleportation with a uniformly accelerated partnerPhys. Rev. Lett.91180404CrossRefADSGoogle Scholar
  56. 56.
    Yu, T., Eberly, J.H. 2004"Finite-time disentanglement via spontaneous emissionPhys. Rev. Lett.93140404ADSGoogle Scholar
  57. 57.
    S. Shresta, C. Anastopoulos, A. Dragulescu, and B. L. Hu, Non-Markovian qubit dynamics in a thermal field bath: relaxation, decoherence and entanglement, Phys. Rev. A [quantph/ 0408084].Google Scholar
  58. 58.
    C. H. Chou and B. L. Hu, Two qubits disentanglement in an effective spin-boson model, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations