Skip to main content
Log in

The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper R and lower length λ scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R) and complexified Clifford Cl C (4) algebra related to Twistors. A unified theory of all Noncommutative branes in Clifford-spaces is developed based on the Moyal-Yang star product deformation quantization whose deformation parameter involves the lower/upper scale \((\hbar \lambda / R)\). Previous work led us to show from first principles why the observed value of the vacuum energy density (cosmological constant) is given by a geometric mean relationship \(\rho \sim L_{\rm Planck}^{-2}R^{-2} = L_{P}^{-4} (L_{\rm Planck} / R)^{2} \sim 10^{-122}M_{\rm Planck}^4\), and can be obtained when the infrared scale R is set to be of the order of the present value of the Hubble radius. We proceed with an extensive review of Smith’s 8D model based on the Clifford algebra Cl (1, 7) that reproduces at low energies the physics of the Standard Model and Gravity, including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Geometric actions are presented like the Clifford-Space extension of Maxwell’s Electrodynamics, and Brandt’s action related to the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries). Finally we outline the reasons why a Clifford-Space Geometric Unification of all forces is a very reasonable avenue to consider and propose an Einstein-Hilbert type action in Clifford-Phase spaces (associated with the 8D Phase space) as a Unified Field theory action candidate that should reproduce the physics of the Standard Model plus Gravity in the low energy limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L. La Relativite Dans tous ses Etats (Hachette Lit, Paris, 1999); L. Nottale, Fractal Spacetime and Microphysics, Towards Scale Relativity. (World Scientific, Singapore, 1992)

  • C. Castro and M. Pavsic, Progress Phys. 1, 31 (2005). Phys. Lett B 559, 74 (2003). Int. J. Theor. Phys 42, 1693–1705 (2003)

  • C. Castro, Chaos, Solitons and Fractals 10, 295 (1999). Chaos, Solitons and Fractals 11, 1663 (2000). Chaos, Solitons and Fractals 12, 1585 (2001)

  • W. Pezzagia, “Physical applications of a generalized geometric calculus” [arXiv.org: gr-qc/9710027] “Dimensionally democratic calculus and principles of polydimensional physics” [arXiv.org: gr-qc/9912025] “Classification of mutivector theories and modifications of the postulates of physics” [arXiv.org: gr-qc/9306006]

  • M. Pavsic, The Landscape of Theoretical Physics: A Global View, from Point Particles to the Brane World and Beyond, in Search of a Unifying Principle (Kluwer Academic Publishers, Dordrect, 2001); Found. Phys. 33, 1277 (2003); Found. Phys. 31, 1185 (2001); Phys. Lett A 254, 119 (1999); Phys. Lett A 242, 187 (1998). Nuovo Cimento A 110, 369 (1997); Kaluza Klein theory without extra dimensions: curved Clifford space [arXiv.org: hep-th/0412255]

  • C. Castro (2000) Found. Phys. 30 1301 Occurrence Handle10.1023/A:1003640606529

    Article  Google Scholar 

  • L. Nam Chang, “Some consequences of the hypothesis of minimal lengths” [arXiv.org: hep-th/0405059]

  • C. Castro (2003) Int. J. Mod. Phys A. 18 5445 Occurrence Handle10.1142/S0217751X0301646X

    Article  Google Scholar 

  • H. Brandt, Contemporary Mathematics 196, 273 (1996); Chaos, Solitons and Fractals 10, 267 (1999)

  • F. Schuller (2002) Ann. Phys. 299 174 Occurrence Handle10.1006/aphy.2002.6273

    Article  Google Scholar 

  • G. Amelino-Camelia, Phys. Lett B 510, 255 (2001); Int. J. Mod. Phys D 11, 35 (2002); Int. J. Mod. Phys D 11, 1643 (2002)

  • L. Castellani, Phys. Lett B 327, 22 (1994); Comm. Math. Phys 171, 383 (1995)

  • J. Lukierski, A. Nowicki, H. Ruegg and V Tolstoy, Phys. Lett B 264, 331 (1991); J. Lukierski, H. Ruegg and W. Zakrzewski, Ann. Phys. 243, 90 (1995); J. Lukierski and A. Nowicki, “Double special relativity verus kappa-deformed dynamics” [arXiv: hep-th/0203065]

  • K. Greisen, Phys. Rev. Lett 16, 748 (1966); G.T. Zatsepin and V. Kurmin, Sov. Phys. JETP Lett 4, 78 (1966)

  • Toller M. (1990). “The Geometry of maximal acceleration” [ArXiv: hep-th/0312016]. Int. J. Theor. Phys. 29: 963

    Google Scholar 

  • E. Caianiello (1981) Lett. Nuovo Cimento 32 65

    Google Scholar 

  • M. Born, Proc. Royal Society A 165, 291 (1938); Rev. Mod. Phys. 21, 463 (1949)

    Google Scholar 

  • S. Low, J. Phys A 35, 5711 (2002); J. Math. Phys 38, 2197 (1997)

  • K. Rama, “Classical velocity in kappa-deformed Poincare algebra and a maximal acceleration” [arXiv: hep-th/0209129]

  • S. Vacaru, “Nonholonomic Clifford-structures and noncommutative Riemann-Finsler geometry ” [arXiv.org: math.DG/0408121]; S. Vacaru and N Vicol, “Nonlinear connections and Clifford structures” [arXiv.org: math.DG/0205190]; S Vacaru, “(Non) commutative Finsler geometry from string/M theory ” [arXiv.org: hep-th/0211068]; S. Vacaru and A. Nadejda, Int. J. Math. Math. Sci 23, 1189 (2004); S. Vacaru, “Clifford structures and spinors on spaces with local anisotropy”, Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si Tehnica 3, 53 (1995); S. Vacaru, Nucl. Phys B 434, 590 (1997)

  • V. Bozza, A. Feoli, G. Lambiase, G. Papini and G. Scarpetta, Phys. Lett A 283, 53 (2001); V Nesterenko, A. Feoli, G. Lambiase and G. Scarpetta, Phys. Rev D 60, 065001 (1999)

    Google Scholar 

  • G. Lambiase, G.Papini and G. Scarpetta, “Maximal zcceleration corrections to the Lamb shift of one electron atoms” [arXiv.org: hep-th/9702130]; G. Lambiase, G.Papini and G Scarpetta, Phys. Lett A 224, 349 (1998); G. Papini, “Shadows of a maximal acceleration” [arXiv.org: gr-qc/0211011]

  • A. Feoli, G. Lambiase, G. Papini and G. Scarpetta, Phys. Lett A 263, 147 (1999); S. Capozziello, A Feoli, G. Lambiase, G. Papini and G. Scarpetta, Phys. Lett A 268, 247 (2000). V. Bozza, G. Lambiase, G. Papini and G Scarpetta, “Quantum violations of the equivalence principle in a modfied Schwarzschild geometry: neutrino oscillations maximal acceleration Corections” [arXiv.org: hep-ph/0012270]

  • J. Webb M. Murphy V. Flambaum V. Dzuba J Barrow C. Churchill J. Prochaska A. Wolfe (2001) ArticleTitle“Further evidence for cosmological evolution of the fine structure constant ” Monthly Not R. Astron. Soc. 327 1208 Occurrence Handle10.1046/j.1365-8711.2001.04840.x

    Article  Google Scholar 

  • J.P. Uzan, “The fundamental constants and their variations: observational status and theoretical motivations” [arXiv.org: hep-ph/0205340]

  • L. Nottale (2003) ArticleTitle“The Pioneer anomalous acceleration : a measurement of the cosmological constant at the scale of the solar system” [arXiv: gr-qc/0307042] Chaos, Solitons Fractals 16 539

    Google Scholar 

  • K. Avinash V.I. Rvachev (2000) Found. Phys. 30 139 Occurrence Handle10.1023/A:1003647210704

    Article  Google Scholar 

  • C.N. Yang (1947) Phys. Rev. 72 874 Occurrence Handle10.1103/PhysRev.72.874

    Article  Google Scholar 

  • C. Castro, “On Noncommutative Yang’s space-time algebra, holography, area quantization and C-space relativity ”. CERN-EXT-2004-090 preprint

  • S.Tanaka, Nuovo Cimento B 114, 49 (1999); S. Tanaka, “Noncommutative field theory on Yang’s space-time algebra, covariant Moyal star products and matrix model ” [arXiv.org: hep-th/0406166]; “Space-time quantization and nonlocal field theory ...” [arXiv.org: hep-th/0002001]; “Yang’s quantized space-time algebra and holographic hypothesis ” [arXiv.org: hep-th/0303105]

  • R. Vilela Mendes, J. Phys A 27, 8091 (1994). R. Vilela-Mendes, “Some consequences of a noncommutative space-time structure ” [arXiv.org: hep-th/0406013]; C Chryssomalakos and E. Okon, “Linear form of 3-scale special relativity algebra and the relevance of stability” [arXiv.org: 0407080]

  • L. Smolin and J. Kowalksi-Glikman, “Triply special relativity” [arXiv.org: hep-th/0406276]; S. S. McGaugh, “Modified Newtonian dynamics as an alternative to dark matter” [arXiv.org: astro-ph/0204521]; A. Aguirre, “Alternatives to dark matter” [arXiv.org: astro-ph/0305572]

  • C. Castro (2002) Mod. Phys. Lett. A. 17 2095 Occurrence Handle10.1142/S0217732302008721

    Article  Google Scholar 

  • F. Smith, Int. J. Theor. Phys 24, 155 (1985); Int. Jour. Theor. Phys 25, 355 (1985). “From sets to quarks” [arXiv.org: hep-ph/9708379] and [ CERN-CDS-EXT-2003-087 ]; G. Gonzalez-Martin, Physical Geometry (University of Simon Bolivar, publishers, Caracas, June 2000, 265 pages, ISBN: 9800767495); G. Gonzalex-Martin, “The proton/electron geometric mass ratio” [arXiv.org: physics/0009052]; G. Gonzalez-Martin, “The fine structure constant from relativistic groups” [arXiv.org: physics/000905]

  • V. Vladimorov, I. Volovich and I. Zelenov, P-adic Numbers in Mathematical Physics (World Scientific, Singapore, 1994); L. Brekke and P. Freund, Phys. Rep. 231, 1 (1993)

  • M. Pitkannen (2002) Chaos, Solitons and Fractals. 13 1205

    Google Scholar 

  • P. Noyes (2001) Bit-String Physics: A Discrete and Finite Approach to Natural Philosophy World Scientific Singapore

    Google Scholar 

  • C. Beck, Spatio-Temporal Vacuum Fluctuations of Quantized Fields (World Scientific, Singapore 2000); Physica D 171, 72 (2002)

  • M. Kafatos, S. Roy and R. Amoroso, “Scaling in cosmology and the arrow of time” Studies in the Structure of Time (Kluwer Academic, Plenum Publishers, New York, 2000); J Glanz, Science 282, 2156 (1998)

  • C. Misner K. Thorne J. Wheeler (1973) Gravitation W. H. Freeman and Co San Francisco

    Google Scholar 

  • R. Penrose W. Rindler (1986) Spinors and Spacetime Cambridge University Press Cambridge

    Google Scholar 

  • A. Ashtekar, C. Rovelli and L. Smolin, Phys Rev. Lett 69, 237 (1992); C. Rovelli, “A dialog on quantum gravity ” [arXiv.org: hep-th/0310077]; L. Freidel, E. Livine and Carlo Rovelli, Class.Quant.Grav 20, 1463 (2003); L Smolin, “How far are we from the quantum theory of gravity?” [arXiv.org:hep-th/0303185]

  • J. Armenta and J. A. Nieto, “The de Sitter relativistic top theory” [arXiv.org: 0405254]

  • C. Castro, Found. Phys. 34, 107 (2004); C. Castro, Europhys. Lett. 61, 480 (2003); Class. Quant. Gravity 20, 3577 (2003) Y. Nambu, Phys. Rev D 7, 2405 (1973)

  • D. H. Tchrakian, J. Math. Phys 21, 166 (1980); B. Dolan and D. H Tchrakian, Phys. Lett B 198, 447 (1987); B. Dolan and Tchrakian, Phys. Lett B 202, 211 (1988)

  • C. Castro, “Branes from Moyal deformation quantization of generalized Yang-Mills” [arXiv.org: hep-th/9908115]; S. Ansoldi, C. Castro and E. Spallucci, Phys. Lett B 504, 174 (2001); S. Ansoldi, C. Castro and E Spallucci, Class. Quant. Grav 18, L23 (2001); S Ansoldi, C. Castro and E. Spallucci, Class. Quan. Gravity 18, L17 (2001); S. Ansoldi, C. Castro, E. Guendelmann and E Spallucci, Class. Quant. Gravity 19, L135 (2002) C. Castro, Gen. Rel. Grav 36, 2605 (2004); C. Castro, Europhys. Lett. 61, 480 (2003); Class. Quant. Gravity 20, 3577 (2003)

  • E. Guendelman, A. Kaganovich, E. Nissimov and S Pacheva “New physics from a dynamical volume element” [arXiv.org: hep-th/0411122]. “Novel sspects in p-brane theories: Weyl-invariant light-like branes” [arXiv.org: hep-th/0409208]; E Guendelman, Class. Quant. Grav 17, 361 (2002). E Guendelman and A. Kaganovich, Phys. Rev D 60, 065004 (1999)

  • T. Curtright and C. Zachos, Phys. Rev D 68, 085001 (2003). T. Curtright, D. Fairlie and C. Zachos, Phys. Lett B 405, 37 (1997); T. Curtright and C. Zachos, “Nambu dynamics, deformation quantization and superintegrability ” [arXiv.org: math-ph/0211021]; C. Zachos, Phys. Lett B 570, 82 (2003)

  • P. Lounesto, Spinor Valued Regular Functions in Hypercomplex Analysis (Report-HTKK-MAT-A154, Helsinki University of Technology, 1979)

  • A. Lasenby, C. Doran and S. Gull, J. Math Phys. 39, 3303 (1998); A.Trayling and W. Baylis, J Phys A 34, 3309 (2001); J. Chisholm and R. Farwell, J Phys. A 32, 2805 (1999); J. Chisholm and R. Farwell, Found. Phys. 25, 1511 (1995); D. Hestences, “Spacetime Algebra”, Gordon and Breach eds, New York (1996); D. Hestenes and G. Sobcyk: “Clifford Algebra to geometric Calculus” D. Reidel, Publishing Company, Dordrecht (1984)

  • C. Castro, “On geometric probability, holography, Shilov boundaries and the four coupling constants in Nature ”, Progress in Physics Vol. 2 (2005) 30–36

  • A. Wyler, C. R. Acad. Sci. Paris A 269, 743 (1969); C. R. Acad. Sci. Paris A 272, 186 (1971)

  • T. Smith, “Golden bars of consensus and the Truth (Top) quark” [arXiv.org physics/0006041]

  • C. Castro (2004) Mod. Phys. Lett A. 19 19 Occurrence Handle10.1142/S0217732304012472

    Article  Google Scholar 

  • Y. Ne’eman and E. Eizenberg, Membranes and Other Extendons (p-branes) (World Scientific Lecture Notes in Physics vol. 39 1995)

  • N. Bjerrus-Bohr, “Quantum Gravity at large number of dimensions” [arXiv.org: hep-th/0310263]; J. F. Donoghue, Phys. Rev D 50, 3874 (1994); A. Strominger, Phys. Rev D 24, 3082 (1981)

  • Capozziello, S. Carloni and A. Troisi, “Quintessence without scalar fields” [arXiv.org: astro-ph/0303041]; S. Carroll, V. Duvvuri, M. Trodden and M Turner, “Is cosmic speed-up due to new gravitational physics?” [arXiv.org: astro-ph/0306438]; A. Lue, R. Scoccimarro and G Strakman, “Differentiating between modified gravity and dark energy” [arXiv.org: astro-ph/0307034]

  • J. Hoppe, “Quantum theory of a relativistic surface” Ph.D thesis MIT (1982)

  • S. Majid (1995) Quantum Groups Cambridge University Press Cambridge

    Google Scholar 

  • C. Castro, “Polyvector super-Poincare algebras, M, F theory algebras and generalized supersymmetry in Clifford spaces”, submitted to Int. Jour. Med. Phys A; D. Alekseevsky et al., Comm. Math. Phys 253, 385 (2004); I. Rudychev and E. Sezgin, Phys. Lett B 424, 60 (1998); I. Bandos and J. Lukierski, Published in “Goslar 1999, Quantum theory and symmetrics” pp 350–356

  • C. Castro, “On Generalized Yang Mills Theories and Extensions of the Standard Model in Clifford (Tensorial) Spaces” Submitted to Ann. Phys. (2005)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, C. The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification. Found Phys 35, 971–1041 (2005). https://doi.org/10.1007/s10701-005-5829-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-5829-x

Keywords

Navigation