Advertisement

Foundations of Physics

, Volume 35, Issue 5, pp 743–785 | Cite as

The Mathematical Basis for Physical Laws

  • R. Eugene Collins
Article
  • 81 Downloads

Abstract

Laws of mechanics, quantum mechanics, electromagnetism, gravitation and relativity are derived as “related mathematical identities” based solely on the existence of a joint probability distribution for the position and velocity of a particle moving on a Riemannian manifold. This probability formalism is necessary because continuous variables are not precisely observable. These demonstrations explain why these laws must have the forms previously discovered through experiment and empirical deduction. Indeed, the very existence of electric, magnetic and gravitational fields is predicted by these purely mathematical constructions. Furthermore these constructions incorporate gravitation into special relativity theory and provide corrected definitions for coordinate time and proper time. These constructions then provide new insight into the relationship between manifold geometry and gravitation and present an alternative to Einstein’s general relativity theory.

Keywords

mechanics electromagnetism gravitation relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Collins, The Continuum and Wave Mechanics, Ph.D. dissertation, Texas A&M University (1954)Google Scholar
  2. 2.
    R. R. Dedekind, Essays on the Theory of Numbers trans. by W. W. Beman (1901) (Open Court, La Salle, Illinois, 1924).Google Scholar
  3. 3.
    Auslander, L., Mackenzie, R. E. 1963Introduction to Differentiable ManifoldsMcGraw-HillNew YorkGoogle Scholar
  4. 4.
    Feller, W. 1950An Introduction to Probability Theory and Its ApplicationsWileyNew YorkVols. I and IIGoogle Scholar
  5. 5.
    Halmos, P. R. 1950Measure TheoryVan NostrandPrinceton, NJGoogle Scholar
  6. 6.
    DeRham, G. 1955Variétés Differentiables, Formes, Courants, Formes HarmoniqueHermannParisGoogle Scholar
  7. 7.
    Hodge, W. V. D. 1963The Theory and Application of Harmonic IntegralsCambridge University PressLondonGoogle Scholar
  8. 8.
    Barut, A. O. 1964Electrodynamics and Classical Theory of Fields and ParticlesMcMillanNew YorkGoogle Scholar
  9. 9.
    R. E. Collins, “The probabilistic basis for quantum mechanics,” submitted to Found. Phys. April 2005.Google Scholar
  10. 10.
    Madelung, E. 1926Z. Phys.40322Google Scholar
  11. 11.
    D. Bohm, Phys. Rev. 85, 166–178 (1952); Phys. Rev. 85, 180–193 (1952)Google Scholar
  12. 12.
    Holland, P. R. 1993The Quantum Theory of MotionCambridge University PressNew YorkGoogle Scholar
  13. 13.
    Stückelberg, E. C. G. 1942Helv. Phys. Acta1423Google Scholar
  14. 14.
    Fanchi, J. R. 1993Parameterized Relativistic Quantum TheoryKluwer AcademicDordrechtGoogle Scholar
  15. 15.
    Jackson, J. D. 1975Classical Electrodynamics2WileyNew YorkGoogle Scholar
  16. 16.
    Mathews, J., Walker, R. L. 1970Mathematical Methods of Physics2BenjaminMenlo Park, CAGoogle Scholar
  17. 17.
    Pais, A. 1982Subtle is the Lord, The Science and Life of Albert EinsteinOxford University PressNew YorkGoogle Scholar
  18. 18.
    Bergmann, P. G. 1976Introduction to the Theory of RelativityDoverNew YorkGoogle Scholar
  19. 19.
    Adler, R., Bazin, M., Shiffer, M. 1975Introduction to General RelativityMcGraw-HillNew YorkGoogle Scholar
  20. 20.
    Pound, R. V., Rebka, G. A. 1959Phys. Rev. Lett.3439441CrossRefGoogle Scholar
  21. 21.
    Pound, R. V., Snider, J. L. 1964Phys. Rev. Lett.13539540CrossRefGoogle Scholar
  22. 22.
    A. Einstein, Ann. Phys. (Leipzig) 35, (1911); also in The Principle of Relativity (Dover, New York, 1952).Google Scholar
  23. 23.
    Lebach, D. E.,  et al. 1995Phys. Rev. Lett.751439CrossRefPubMedGoogle Scholar
  24. 24.
    A. Einstein Ann. Phys. (Leipzig) 49, (1916); also in The Principle of Relativity (Dover, New York, 1952).Google Scholar
  25. 25.
    Einstein, A. 1950The Meaning of RelativityPrinceton University PressPrinceton, NJGoogle Scholar
  26. 26.
    K. Schwartzschild, Sitzber. Preuss. Akad. Wiss. (Berlin, 1916), pp. 189–196.Google Scholar
  27. 27.
    Birkhoff, G. 1923Relativity and Modern PhysicsCambridge University PressMassGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Eugene CollinsFort CollinsU.S.A

Personalised recommendations