Skip to main content
Log in

On the Classical Limit in Bohm’s Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The standard means of seeking the classical limit in Bohmian mechanics is through the imposition of vanishing quantum force and quantum potential for pure states. We argue that this approach fails, and that the Bohmian classical limit can be realized only by combining narrow wave packets, mixed states, and environmental decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Holland (1993) The Quantum Theory of Motion Cambridge University Press Cambridge

    Google Scholar 

  • J. Cushing (1994) Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony University of Chicago Press Chicago

    Google Scholar 

  • D. Bohm B. Hiley (1993) The Undivided Universe: An Ontological Interpretation of Quantum Theory Routledge London

    Google Scholar 

  • J. Cushing G. Bowman (1999) Bohmian mechanics and chaos J. Butterfield C. Pagonis (Eds) From Physics to Philosophy Cambridge University Press Cambridge

    Google Scholar 

  • W. Dickson (1998) Quantum Chance and Non-Locality Cambridge University Press Cambridge

    Google Scholar 

  • P. Holland A. Kyprianidis (1988) ArticleTitleQuantum potential, uncertainty and the classical limit Ann. Inst. Henrí Poincaré 49 325

    Google Scholar 

  • D. Home (1997) Conceptual Foundations of Quantum Physics Plenum New York

    Google Scholar 

  • L. Ballentine (1998) Quantum Mechanics: A Modern Development World Scientific Singapore

    Google Scholar 

  • A. Makowski (2003) ArticleTitleExact classical limit of quantum mechanics noncentral potentials and Ermakov-type invariants Phys. Rev. A 68 022102

    Google Scholar 

  • A. Makowski (2002) ArticleTitleExact classical limit of quantum mechanics central potentials and specific states Phys. Rev. A 65 032103

    Google Scholar 

  • A. Makowski (1999) ArticleTitlePotentials for identical classical and quantum motions Phys.Lett. A258 83

    Google Scholar 

  • A. Makowski K. Górska (2002) ArticleTitleBohr’s correspondence principle the cases for which it is exact Phys. Rev. A 66 062103

    Google Scholar 

  • A. Makowski S. Konkel (1998) ArticleTitleIdentical motion in classical and quantum mechanics Phys.Rev. A 58 4975–00

    Google Scholar 

  • S. Konkel A. Makowski (1998) ArticleTitleRegular and chaotic causal trajectories for the Bohm potential in a restricted space Phys. Lett. A 238 95–00

    Google Scholar 

  • D. Drr S. Goldstein N. Zanghi (1992) ArticleTitleQuantum chaos, classical randomness, and Bohmian mechanics. J. Stat. Phys. 68 259–00

    Google Scholar 

  • G. Bowman, Wave packets, quantum chaos and the classical limit of Bohmian mechanics, Ph.D. thesis, University of Notre Dame (2000).

  • G. Bowman (2002) ArticleTitleWave packets and Bohmian mechanics in the kicked rotator. Phys. Lett. A 298 7–00

    Google Scholar 

  • B. Lan (2000) ArticleTitleViolation of the correspondence principle breakdown of the Bohm–Newton trajectory correspondence in a macroscopic system Phys. Rev. A 61 032105

    Google Scholar 

  • U. Schwengelbeck F. Faisal (1995) ArticleTitleDefinition of Lyapunov exponents and KS entropy in quantum dynamics Phys. Lett. A 199 281

    Google Scholar 

  • P. Falsaperla G. Fonte (2003) ArticleTitleOn the motion of a single particle near a nodal line in the de Broglie-Bohm interpretation of quantum mechanics. Phys. Lett. A 316 382–00

    Google Scholar 

  • H. Frisk (1997) ArticleTitleProperties of the trajectories in Bohmian mechanics Phys. Lett. A 227 139–00

    Google Scholar 

  • Z. Malik and C. Dewdney, ‘‘Quantum mechanics, chaos, and the Bohm theory’’, quant-ph/9506026.

  • C. Dewdney Z. Malik (1996) ArticleTitleMeasurement, decoherence and chaos in quantum pinball Phys. Lett. A 220 183–00

    Google Scholar 

  • S. Sengupta P. Chattaraj (1996) ArticleTitleThe quantum theory of motion and signatures of chaos in the quantum behaviour of a classically chaotic system Phys. Lett. A 215 119–00

    Google Scholar 

  • F. Faisal U. Schwengelbeck (1995) ArticleTitleUnified theory of Lyapunov exponents and a positive example of deterministic quantum chaos Phys. Lett. A 207 31–00

    Google Scholar 

  • G. Iacomelli M. Pettini (1996) ArticleTitleRegular and chaotic quantum motions Phys. Lett. A 212 29–00

    Google Scholar 

  • O. Bonfim Particlede Alcantara J. Florencio F.S. Barreto (2000) ArticleTitleChaotic Bohm’s trajectories in a quantum circular billiard Phys. Lett. A 277 129–00

    Google Scholar 

  • O. Bonfim Particlede Alcantara J. Florencio F.S. Barreto (1998) ArticleTitleQuantum chaos in a double square well an approach based on Bohm’s view of quantum mechanics Phys. Rev. E 58 6851

    Google Scholar 

  • O. Bonfim Particlede Alcantara J. Florencio F.S. Barreto (1998) ArticleTitleChaotic dynamics in billiards using {B}ohm’s quantum mechanics Phys. Rev. E 58 R2693

    Google Scholar 

  • A. Makowski P. Peplowski S. Dembiński (2000) ArticleTitleChaotic causal trajectories the role of the phase of stationary states Phys. Lett. A 266 241

    Google Scholar 

  • R. Parmenter R. Valentine (1997) ArticleTitleChaotic causal trajectories associated with a single stationary state of a system of noninteracting particles Phys. Lett. A 227 5–00

    Google Scholar 

  • R. Parmenter R. Valentine (1995) ArticleTitleDeterministic chaos and the causal interpretation of quantum mechanics Phys. Lett. A 201 1–00

    Google Scholar 

  • G. dePolavieja (1996) ArticleTitleExponential divergence of neighboring quantal trajectories Phys. Rev. A 53 2059–00

    Google Scholar 

  • U. Schwengelbeck F. Faisal (1997) ArticleTitleTransition to deterministic chaos in a periodically driven quantum system and breaking of the time-reversal symmetry Phys. Rev. E 55 6260–00

    Google Scholar 

  • J. de Sales J. Florencio (2001) ArticleTitleBohmian quantum trajectories in a square billiard in the bouncing ball regime Physica A 290 101–00

    Google Scholar 

  • V. Allori, D. Dürr, S. Goldstein, and N. Zanghi, ‘‘Seven steps towards the classical world’’, (2001). {\tt quant-ph/0112005}.

  • L. Ballentine (1996) The emergence of classical properties from quantum mechanics R. Clifton (Eds) Perspectives on Quantum Reality: Non-Relativistic, Relativistic and Field-Theoretic Kluwer Dordrecht

    Google Scholar 

  • D. Appleby (1999) ArticleTitleGeneric Bohmian trajectories of an isolated particle Found. Phys. 29 1863–00

    Google Scholar 

  • D. Appleby (1999) ArticleTitleBohmian trajectories post-decoherence Found. Phys. 29 1885–00

    Google Scholar 

  • P. Holland (1996) Is quantum mechanics universal J. Cushing A. Fine S. Goldstein (Eds) Bohmian Mechanics and Quantum Theory: An Appraisal Kluwer Dordrecht

    Google Scholar 

  • L. Schiff Quantum Mechanics (1968) 3rd edn. McGraw-Hill New York

    Google Scholar 

  • A. Lichtenberg M. Lieberman (1992) Regular and Chaotic Dynamics Springer-Verlag New York

    Google Scholar 

  • F. Izrailev (1990) ArticleTitleSimple models of quantum chaos spectrum and eigenfunctions Phys. Rep 196 299

    Google Scholar 

  • G. Casati, B. Chirikov, F. Izraelev, and J. Ford, “Stochastic behavior of a quantum pendulum under a periodic perturbation,” in “Stochastic Behavior in Classical and Quantum Hamiltonian Systems,” G. Casati and J. Ford, eds., (Springer-Verlag, New York, 1979).

  • B. Lan (2001) ArticleTitleBohm’s quantum-force time series stable distribution, flat power spectrum, and implication Phys. Rev. A 63 042105

    Google Scholar 

  • A. Messiah (1964) Quantum Mechanics North-Holland Amsterdam 216–218

    Google Scholar 

  • E. Jackson (1991) Perspectives of Nonlinear Dynamics 1 Cambridge University Press Cambridge

    Google Scholar 

  • M. Tegmark (1993) ArticleTitleApparent wave function collapse caused by scattering Found. Phys. Lett. 6 571–00

    Google Scholar 

  • D. Giulini E. Joos C. Kiefer J. Kupsch I. Stamatescu H. Zeh (1996) Decoherence and the Appearance of a Classical World in Quantum Theory Springer-Verlag New York

    Google Scholar 

  • J. Ford G. Mantica (1992) ArticleTitleDoes quantum mechanics obey the correspondence principle Is it complete?’’ Am. J. Phys. 60 1086–00

    Google Scholar 

  • W. Zurek J. Paz (1994) ArticleTitleDecoherence, chaos, and the second law Phys. Rev. Lett. 72 2508–00

    Google Scholar 

  • G. Casati B. Chirikov (1995) ArticleTitleComment on Decoherence, chaos, and the second law’ Phys. Rev. Lett. 75 350–00

    Google Scholar 

  • W. Zurek J. Paz (1995) ArticleTitleReply to Casati and Chirikov Phys. Rev. Lett. 75 351–00

    Google Scholar 

  • R. Hilborn (2000) Chaos and Nonlinear Dynamics, 2nd edn. Oxford University Press Oxford

    Google Scholar 

  • B. d’Espagnat (1995) Veiled Reality: An Analysis of Present-Day Quantum Mechanical Concepts Addison-Wesley Reading, MA

    Google Scholar 

  • K. Blum (1996) Density Matrix Theory and Applications Plenum New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Bowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, G.E. On the Classical Limit in Bohm’s Theory. Found Phys 35, 605–625 (2005). https://doi.org/10.1007/s10701-004-2013-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-004-2013-7

Keywords

Navigation