Foundations of Physics

, Volume 35, Issue 4, pp 541–560 | Cite as

Quantum Mechanics is About Quantum Information



I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive---just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical entity in its own right.


quantum information foundations of quantum mechanics quantum measurement entanglement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cushing, J. T. 1994Quantum Mechanics: Historical Contingency and the Copenhgen HegemonyUniversity of Chicago PressChicagoGoogle Scholar
  2. Cushing, J. T. 1998Philosophical Concepts in PhysicsCambridge University PressCambridgeMATHGoogle Scholar
  3. Cushing, J. T.Fine, A.Goldstein, S. eds. 1996Bohmian Mechanics and Quantum Theory: An AppriaisalKluwerDordrechtGoogle Scholar
  4. Bohm, D., Hiley, B. J. 1993The Undivided Universe: An Ontological Interpretation of Quantum TheoryRoutledgeLondonGoogle Scholar
  5. S. Goldstein, ‘‘Bohmian mechanics’’, in Stanford Encyclopedia of Philosophy, E. N. Zalta, ed., Scholar
  6. A. Einstein, ‘‘What is the theory of relativity’’, First published in The Times, London (November 28, 1919), p. 13. Also in A. Einstein, Ideas and Opinions (Bonanza Books, New York, 1954), pp. 227–232.Google Scholar
  7. A. Einstein, ‘‘Autobiographical notes’’, in Albert Einstein: Philosopher–Scientist, P. A. Schilpp, ed. (Open Court, La Salle, IL, 1949), pp. 3.Google Scholar
  8. Klein, M. J. 1967Thermodynamics in Einstein’s thoughtScience157509516ADSGoogle Scholar
  9. Lorentz, H. A. 1909The Theory of ElectronsColumbia University PressNew YorkGoogle Scholar
  10. Landsman, N. 1998Mathematical Topics Between Classical and Quantum MechanicsSpringerNew YorkGoogle Scholar
  11. Connes, A. 1994Noncommutative GeometryAcademic PressSan DiegoMATHGoogle Scholar
  12. Schrödinger, E. 1935Discussion of probability relations between separated systemsProc. Cambridge Philos. Soc.31555563Google Scholar
  13. J. Bub, ‘‘Why the Quantum?’’ Stud. Hist. Philos. Modern Phys. 35B, 241–266 (2004).Google Scholar
  14. Clifton, R., Bub, J., Halvorson, H. 2003Characterizing quantum theory in terms of information-theoretic constraintsFound. Phys.3315611591MathSciNetGoogle Scholar
  15. H. Halvorson, ‘‘A note on information-theoretic characterizations of physical theories’’, quant-ph/0310101.Google Scholar
  16. H. Halvorson and J. Bub, ‘‘Can quantum cryptography imply quantum mechanics? Reply to Smolin’’, quant-ph/0311065.Google Scholar
  17. H. Halvorson, ‘‘Generalization of the Hughston–Jozsa–Wootters theorem to hyperfinite von Neumann algebras’’, quant-ph/031001.Google Scholar
  18. Landau, L. J. 1987On the violation of Bell’s inequality in quantum theoryPhys. Lett. A1205456ADSMathSciNetGoogle Scholar
  19. Summers, S. 1990On the independence of local algebras in quantum field theoryRev. in Math. Phys.2201247MATHADSMathSciNetGoogle Scholar
  20. G. Bacciagaluppi, ‘‘Separation theorems and Bell inequalities in Algebraic Quantum Mechanics’’, in Symposium on the Foundations of Modern Physics 1993: Quantum Measurement, Irreversibility and the Physics of Information, P. Busch, P. Lahti, and P. Mittelstaedt, eds. (World Scientific, Singapore, 1994), pp. 29–37.Google Scholar
  21. C. H. Bennett and G. Brassard, ‘‘Quantum cryptography: public key distribution and coin tossing’’, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, New York, 1984), pp. 175–179.Google Scholar
  22. D. Mayers, ‘‘Unconditionally secure quantum bit commitment is impossible’’, in Proceedings of the Fourth Workshop on Physics and Computation (New England Complex System Institute, Boston, 1996), pp. 224–228.Google Scholar
  23. Mayers, D. 1997Unconditionally secure quantum bit commitment is impossiblePhys. Rev. Lett.7834143417ADSGoogle Scholar
  24. Lo, H. -K., Chau, H. F. 1997Is quantum bit commitment really possible?Phys. Rev. Lett.7834103413ADSGoogle Scholar
  25. Hughston, L. P., Jozsa, R., Wootters, W. K. 1993A complete classification of quantum ensembles having a given density matrixPhys. Lett. A1831418ADSMathSciNetGoogle Scholar
  26. Schrödinger, E. 1936Probability relations between separated systemsProc. Cambridge Philos. Soc.32446452CrossRefGoogle Scholar
  27. Bub, J. 2001The Bit Commitment TheoremFound. Phys.31735756MathSciNetGoogle Scholar
  28. Kent, A. 1999Unconditionally secure bit commitmentPhys. Rev. Lett.8314471450ADSMathSciNetGoogle Scholar
  29. A. Valentini, ‘‘Subquantum information and computation’’, quantu-ph/0203049.Google Scholar
  30. Bell, J. S. 1987Beables for quantum field theoryBell, J. S. eds. Speakable and Unspeakable in Quantum MechanicsCambridge University PressCambridge173180Google Scholar
  31. Pauli, W. 1954letter to M. Born dated March 30, 1954Born, M. eds. The Born-Einstein LettersWalker and CoLondon218Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of MarylandUSA

Personalised recommendations