Foundations of Physics

, Volume 35, Issue 4, pp 517–540 | Cite as

Solving the Measurement Problem: De Broglie--Bohm Loses Out to Everett

  • Harvey R. BrownEmail author
  • David Wallace


The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.


De Broglie–Bohm Everett measurement decoherence consciousness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohm, D. 1952Quantum TheoryPrentice-HallNew YorkGoogle Scholar
  2. Dürr, D., Goldstein, S., Zanghi, N. 1992Quantum equilibrium and the origin of absolute uncertaintyJ. Stat. Phys.67843907Google Scholar
  3. Holland, P. 1993The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum MechanicsCambridge University PressCambridgeGoogle Scholar
  4. Bohm, D., Hiley, B. J. 1993The Undivided UniverseRoutledgeLondonGoogle Scholar
  5. Cushing, J. T. 1994Quantum Mechanics: Historical Contingency and the Copenhagen HegemonyThe University of Chicago PressChicagoGoogle Scholar
  6. Myrvold, W. C. 2003On some early objections to Bohm’s theoryInt. Stud. Phil. Sci.17724Google Scholar
  7. Deutsch, D. 1996Comment on LockwoodBrit. J. Phil. Sci.47222228Google Scholar
  8. H. D. Zeh, ‘‘Why Bohm’s quantum theory?’’, Found. Phys. Lett. 12, 197–200 (1999). quant-ph/9812059 v2.Google Scholar
  9. Wallace, D. 2003Everett and structureStud. Hist. Phil. Mod. Phys.3487105Google Scholar
  10. Saunders, S. 1999The ‘beables’ of relativistic pilot-wave theoryButterfield, J.Pagonis, C. eds. From Physics to PhilosophyCambridge University PressCambridge7189Google Scholar
  11. Stone, A. D. 1994Does the Bohm theory solve the measurement problem?Phil. Sci.62250266Google Scholar
  12. Maudlin, T. 1995Why Bohm’s theory solves the measurement problemPhil. Sci.62479483Google Scholar
  13. D. Bohm, ‘‘A suggested interpretation of quantum mechanics in terms of ‘hidden’ variables, I; II’’, Phys. Rev. 85, 166–179; 180–193 (1952).Google Scholar
  14. Bub, J. 1997Interpreting the Quantum WorldCambridge University PressCambridgeGoogle Scholar
  15. Bohm, D. 1962Classical and non-classical concepts in the quantum theory an answer to Heisenberg’s Physics and PhilosophyBrit. J. Phil. Sci.12265280Google Scholar
  16. Bohm, D. 1962‘‘Hidden variables in the quantum theory’‘Bates, D. R. eds. Quantum Theory III. Radiation and High Energy PhysicsAcademic PressNew York345387Reprinted, with minor alterations, in [17]Google Scholar
  17. Bohm, D. 1980Wholeness and the Implicate OrderRoutledge and Kegan PaulLondon65110Google Scholar
  18. Bohm, D., Hiley, B. 1984Measurement as understood through the quantum potential approachFound. Phys.14255274Google Scholar
  19. Englert, B.-G., Scully, M. O., Süssman, G., Walther, H. 1992‘‘Surrealistic Bohm trajectories’‘Z. Naturforsch.47a11751186Google Scholar
  20. Dewdney, C., Hardy, L., Squires, E. J. 1993How late measurements of quantum trajectories can fool a detectorPhys. Lett.184A611Google Scholar
  21. Brown, H. R., Dewdney, C., Horton, G. 1995Bohm particles and their detection in the light of neutron interferometryFound. Phys.25329347Google Scholar
  22. B. J. Hiley, R. E. Callaghan, and O. J. Maroney, ‘‘Quantum trajectories, real, surreal or an approximation to a deeper process?’’, quant-ph/00100220 v2.Google Scholar
  23. Deutsch, D. 1995Quantum theory as a universal physical theoryInt. J. Theor. Phys.24141Google Scholar
  24. Albert, D., Loewer, B. 1988Interpreting the many worlds interpretationSynthese\/77195213Google Scholar
  25. Foster, S., Brown, H. R. 1988On a recent attempt to define the interpretation basis in the many worlds interpretation of quantum mechanicsInt. J. Theor. Phys.2715071531Google Scholar
  26. Lockwood, M. 1996Many minds’ interpretations of quantum mechanicsBrit. J. Phil. Sci.47159188Google Scholar
  27. Saunders, S. 1995Time, decoherence and quantum mechanicsSynthese\/102235266Google Scholar
  28. D. Wallace, ‘‘Worlds in the Everett interpretation’’, Stud. Hist. Phil. Mod. Phys. 33, 637–661 (2002). Available from or’’.Google Scholar
  29. L. Vaidman, ‘‘The many-worlds interpretation of quantum mechanics’’, in Stanford Encyclopedia of Philosophy (Summer 2002 Edition), Edward N. Zalta, ed. URL S. Saunders, ‘‘Time, quantum mechanics, and probability’’, Synthese 114, 373–404 (1998)..Google Scholar
  30. D. Wallace, ‘‘Quantum probability from subjective likelihood: improving on Deutsch’s proof of the probability rule’’, (2003). Available from quant-ph/0312157 or Scholar
  31. D. Wallace, ‘‘Worlds in the Everett interpretation,’’ Stud. Hist. Phil. Mod. Phys. 33, 637--661 (2002). Available from or’’ Google Scholar
  32. J. S. Bell, ‘‘Quantum mechanics for cosmologists’’, in Quantum Gravity 2: a second Oxford Symposium, C. J. Isham, R. Penrose, and D. Sciama eds. (Clarendon Press, Press, 1981) Reprinted in [34].Google Scholar
  33. Bell, J. S. 1987Speakable and Unspeakable in Quantum MechanicsCambridge University PressCambridgeGoogle Scholar
  34. A. Kent, ‘‘Against many-worlds interpretations’’, Int. J. Theor. Phys. A5, 1764 (1990). gr-qc/9703089.Google Scholar
  35. A. Kent, ‘Against many-worlds {i}nterpretations,’’ Int. J. Theor. Phys. A5, 1764 (1990). gr-qc/9703089.Google Scholar
  36. Kim, J. 1998Mind in a Physical WorldMIT Press/BradfordCambridge, Mass.Google Scholar
  37. D. Ross and D. Spurrett, ‘‘What to say to a sceptical metaphysician: a defense manual for cognitive and behavioral scientists’’, Behav. Brain Sci. in press.Google Scholar
  38. Brown, H. R., Dewdney, C., Horton, G. 1995Bohm particles and their detection in the light of neutron interferometryFound. Phys.25329347Google Scholar
  39. Brown, H. R., Elby, A., Weingard, R. 1996Cause and effect in the pilot-wave interpretation of quantum mechanicsCushing, J. T.Fine, A.Goldstein, S. eds. Bohmian Mechanics and Quantum Theory: An AppraisalKluwer AcademicDordrecht309319Google Scholar
  40. Anandan, J., Brown, H. R. 1995On the reality of space–time geometry and the wavefunctionFound. Phys.25349360Google Scholar
  41. D. Dürr, S. Goldstein, and N. Zanghi, ‘‘Bohmian mechanics and the meaning of the wave function’’, in Experimental Metaphysics: quantum mechanical studies in honour of Abner Shimony R. S. Cohen, M. Horne, and J. Stachel eds. (Kluwer Academic, Dordrecht, 1996), pp.\,25–38. Available from Scholar
  42. Goldstein, S., Teufel, S. 2000Quantum spacetime without observer: ontological clarity and the conceptual foundations of quantum gravityCallender, C.Huggett, N. eds. Physics Meets Philosophy at the Planck ScaleCambridge University PressCambridge275289Google Scholar
  43. Brown, H. R. 1996Mindful of quantum possibilitiesBrit. J. Phil. Sci.47189200Google Scholar
  44. A. Valentini, On the Pilot-Wave Theory of Classical, Quantum, and Subquantum Physics, PhD thesis (International School for Advanced Studies, Trieste, Italy, 1992).Google Scholar
  45. D. C. Dennett, ‘‘The zombic hunch: extinction of an intuition?’’, Royal Institution of Philosophy Milennial Lecture (1999). Available from pubpage.htm.Google Scholar
  46. Penrose, R. 1989The Emperor’s New MindOxford University PressOxfordGoogle Scholar
  47. Penrose, R. 1994Shadows of the MindOxford University PressOxfordGoogle Scholar
  48. Searle, J. R. 1992The Rediscovery of the MindMIT PressCambridge, Mass.Google Scholar
  49. Chalmers, D. 1996The Conscious Mind: In Search of a Fundamental TheoryOxford University PressOxfordGoogle Scholar
  50. Cushing, J. T. 1996What measurement problem?Clfiton, R. eds. Perspectives on Quantum RealityKluwer AcademicDordrecht167181Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of OxfordOxfordUnited Kingdom
  2. 2.Magdalen CollegeOxfordUnited Kingdom

Personalised recommendations