Foundations of Physics

, Volume 35, Issue 2, pp 313–343 | Cite as

Nonlocality and Information Flow: The Approach of Deutsch and Hayden

  • C. G. Timpson

Deutsch and Hayden claim to have provided an account of quantum mechanics which is particularly local, and which clarifies the nature of information transmission in entangled quantum systems. In this paper, a perspicuous description of their formalism is offered and their claim assessed. It proves essential to distinguish, as Deutsch and Hayden do not, between two ways of interpreting the formalism. On the first, conservative, interpretation, no benefits with respect to locality accrue that are not already available on either an Everettian or a statistical interpretation; and the conclusions regarding information flow are equivocal. The second, ontological, interpretation, offers a framework with the novel feature that global properties of quantum systems are reduced to local ones; but no conclusions follow concerning information flow in more standard quantum mechanics.


Deutsch--Hayden information flow entanglement locally inaccessible information nonlocality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N. 1935“Can quantum mechanical description of physical reality be considered complete?”Phys. Rev.47777780CrossRefMATHADSGoogle Scholar
  2. 2.
    Schrödinger, E. 1935“Discussion of probability relations between separated systems”Proc. Camb. Phil. Soc.31555563CrossRefGoogle Scholar
  3. 3.
    Bell, J. S. 1964“On the Einstein–Podolsky–Rosen paradox”Physics1195200MATHGoogle Scholar
  4. 4.
    Redhead, M. L. G. 1987Incompleteness Non-Locality and RealismOxford University PressOxfordGoogle Scholar
  5. 5.
    Maudlin, T. 2002Quantum Non-Locality and RelativityBlackwell Publishers Ltd.Oxford, second ednGoogle Scholar
  6. 6.
    Nielsen, M. A., Chuang, I. L. 2000Quantum Computation and Quantum InformationCambridge University PressCambridgeMATHGoogle Scholar
  7. 7.
    Bennett, C. H., Weisner, S. J. 1992“Communication via one- and two-particle operators onEinstein–Podolsky–Rosen states”Phys. Rev. Lett.6928812884CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W. 1993“Teleporting an unknown state via dual classical and EPR channels”Phys. Rev. Lett.7018951899CrossRefMathSciNetMATHADSGoogle Scholar
  9. 9.
    Deutsch, D., Hayden, P. 2000“Information flow in entangled quantum systems”Proc. R. Soc. Lond.A 45617591774arXiv:quant-ph/9906007ADSMathSciNetGoogle Scholar
  10. 10.
    Schilpp, P. A. 1979Autobiographical NotesEinstein, Albert eds. Albert Einstein: Philosopher-Scientist in The Library of Living PhilosophersOpen Court Publishing CompanyLa Salle, IllinoisFirst published in P. A. Schilpp, ed.Google Scholar
  11. 11.
    Everett, H.,III 1957“Relative state’ formulation of quantum mechanics”Rev. Mod. Phys.29454462ADSMathSciNetGoogle Scholar
  12. 12.
    Saunders, S. 1996“Relativism”Clifton, R. eds. Perspectives on Quantum RealityKluwer Academic PublishersDordrecht125142Google Scholar
  13. 13.
    Wallace, D. 2002“Worlds in the Everett interpretation”Stud. Hist. Phil. Mod. Phys.33637661arXiv:quant-ph/0103092MathSciNetGoogle Scholar
  14. 14.
    Braunstein, S. L. 1996“Quantum teleportation without irreversible detection”Phys. Rev. A5319001902ADSGoogle Scholar
  15. 15.
    Fano, U. 1957“Description of states in quantum mechanics by density operator techniques”Rev. Mod. Phys.297493CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    D. Gottesman, ‘The Heisenberg representation of quantum computers”, July (1998), arXiv:quant-ph/9807006.Google Scholar
  17. 17.
    R. Jozsa, Personal communication, January (2001).Google Scholar
  18. 18.
    Timpson, C. G., Brown, H. R. 2002“Entanglement and relativity”Lupacchini, R.Fano, V. eds. Understanding Physical KnowledgeUniversity of Bologna, CLUEBBologna147166arXiv:quant-ph/0212140Google Scholar
  19. 19.
    Braunstein, S. L., D’Ariano, G. M., Milburn, G. J., Sacchi, M. F. 2000“Universal teleportation with a twist”Phys. Rev. Lett.8434863489ADSGoogle Scholar
  20. 20.
    L. Vaidman, “On the paradoxical aspects of new quantum experiments”, in D. Hull, M. Forbes, and R. M. Burian, ed., PSA 1994, vol. 1. (Philosophy of Science Association, 1994) pp. 211–217.Google Scholar
  21. 21.
    Maudlin, T. 1998“Part and whole in quantum mechanics”Castellani, E. eds. Interpreting BodiesPrinceton University PressPrinceton, New Jersey4660Google Scholar
  22. 22.
    Penrose, R. 1998“Quantum computation, entanglement and state reduction”Phil. Trans. R. Soc. Lond.A35619271939ADSMathSciNetGoogle Scholar
  23. 23.
    D. Collins and S. Popescu, “Classical analog of entanglement”, Phys Rev A 65(3), 032321 (2002), arXiv:quant-ph/0107082.Google Scholar
  24. 24.
    P.F. Strawson, “Truth,” Proc. Aristot. Soc. Suppl. 24, 129--56 (1950); repr. in S. Blackburn and K. Simmons, eds., Truth (Oxford University Press, Oxford, 1999)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of PhilosophyUniversity of LeedsLeedsUK

Personalised recommendations