Foundations of Physics

, Volume 35, Issue 1, pp 155–156 | Cite as

Quantum Information and Inferential Reasoning

  • Gennaro Auletta

Information may be extracted from a quantum–mechanical system only by means of inference. For this reason, the observer, although not required as such for obtaining an eigenstate of the measured observable on a given system, is necessary for obtaining information.


quantum information classical information inference sign observer living being 


  1. Zeh, H. D. 1970On the interpretation of measurement in quantum theoryFound. Phys.16976ADSGoogle Scholar
  2. Zurek, W. H. 1981Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?Phys. Rev.D241525ADSMathSciNetGoogle Scholar
  3. Zurek, W. H. 1982Environment-induced superselection rulesPhys. Rev.D2618621880ADSMathSciNetGoogle Scholar
  4. Joos, E., Zeh, H. D. 1985The emergence of classical properties through interaction with the environmentZeitschr. f. Phys.B59223243Google Scholar
  5. Wheeler, J. A. 1978‘‘The ‘Past’ and the ‘Delayed-Choice’ double-slit experiment,’‘Marlow, A. R. eds. Mathematical Foundations of Quantum TheoryAcademicNew York948Google Scholar
  6. Friedman, M. eds. 1983Foundations of Space-Time Theories. Relativistic Physics and Philosophy of SciencePrinceton University PressPrincetonGoogle Scholar
  7. Maudlin, T. eds. 2002Quantum Non-Locality and RelativityBlackwell, Oxford, 1994OxfordGoogle Scholar
  8. A. Stefanov, H. Zbinden, N. Gisin, and A. Suarez ‘‘Quantum correlations with spacelike separated beam splitters in motion: Experimental test of multisimultaneity,’’ Phys. Rev. Lett. 88 (2002).Google Scholar
  9. Grot, N., Rovelli, C., Tate, R. S. 1996Time-of-arrival in quantum mechanicsPhys. Rev.A5446764690ADSMathSciNetGoogle Scholar
  10. Elitzur, A. C., Vaidman, L. 1993Quantum mechanical interaction-free measurementsFound. Phys.23987997ADSGoogle Scholar
  11. C. S. Peirce, ‘‘On the logic of science: harvard lectures,’’ (1865), in (11, I, pp. 161–302).Google Scholar
  12. J. A. Wheeler Law without Law’’, in (13, pp. 182–213).Google Scholar
  13. C. S. Peirce, ‘‘Deduction, induction, and hypothesis,’’ Popular Sci. Monthly 13, 470–482 (1878); in (11, III, pp. 323–338).Google Scholar
  14. Bohr, N. 1935Can quantum-mechanical description of physical reality be considered complete?Phys. Rev.48696702MATHADSGoogle Scholar
  15. E. Schrödinger, ‘‘Die gegenwärtige Situation in der Quantenmechanick. I–III,’’ Naturwissenschaften ol 23, 807, 812 823, 828, 844– 849, (1935)Google Scholar
  16. Rips, L. J. 1985“Deduction and cognition’‘Osherson, D. N. eds. An Invitation to Cognitive Science: Thinking, Vol. 3MIT PressCambridge, MA297343Google Scholar
  17. C. S. Peirce, ‘‘The basis of pragmaticism in normative sciences,’’ (1906), in (22, II, pp. 371–397). Google Scholar
  18. Harman, G. 1985“Rationality’‘Osherson, D. N. eds. An Invitation to Cognitive Science: Thinking, Vol. 3MIT PressCambridge, MA175211Google Scholar
  19. Waddington, C. H. 1961Genetic AssimilationAdv. Genet.10257290CrossRefGoogle Scholar
  20. Hoffmeyer, J. 1997Biosemiotics: towards a new synthesis in biologyEur. J. Semiotic Stud.9355376Google Scholar
  21. Peirce, C. S. 1982Writings, Vol. IIndiana University PressBloomingtonGoogle Scholar
  22. Wheeler, J. A., Zurek, W. H. 1983Quantum Theory and MeasurementPrinceton University PressPrincetonGoogle Scholar
  23. Peirce, C. S. 1998The Essential Peirce, Vols. I–IIIndiana University PressBloomingtonGoogle Scholar
  24. G. Auletta, Foundations and Interpretation of Quantum Mechanics. In the Light of a critical-historical Analysis of the Problems and of a Synthesis of the Results (World Scientific, Singapore, 2000; rev. edn. 2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of PhilosophyUniversity of Urbino, Italy Gregorian UniversityRomeItaly

Personalised recommendations