Advertisement

Foundations of Physics

, Volume 34, Issue 12, pp 1835–1887 | Cite as

Synchronization Gauges and the Principles of Special Relativity

  • Guido Rizzi
  • Matteo Luca Ruggiero
  • Alessio Serafini
Article

Abstract

The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of “theories” that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri–Sexl synchronization gauge and, finally, to the even more general Anderson–Vetharaniam–Stedman’s synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light in inertial and rotating reference frames, the global positioning system (GPS)’s working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.

Keywords

special relativity synchronization gauge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einstein, A. 1989Collected Paper of A. Einstein. The Swiss Years: Writing 1900–1909, Vol. 2Princeton University PressPrincetonGoogle Scholar
  2. Einstein, A. 1952Axiomatization of the Theory of RelativityCrownNew YorkGoogle Scholar
  3. Reichenbach, H. 1969Axiomatization of the Theory of RelativityUniversity of California PressBerkeley and Los AngelesGoogle Scholar
  4. Grünbaum, A. 1973Philosophical Problems of Space and Time, 2nd enlarged edn., in Boston Studies in the Philosophy of Science, Vol. 12D. ReidelDordrecht/BostonGoogle Scholar
  5. Bergia, S. 2000G. Fis.4113Google Scholar
  6. A. Tartaglia in Relativity in Rotating Frames, G .Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004). Google Scholar
  7. F. Sorge, in Relativity in Rotating Frames, G .Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  8. Ellis, B., Bowman, P. 1967Philos. Sci.34116Google Scholar
  9. Malament, D. 1977Noûs11293Google Scholar
  10. Friedman, M. 1983Foundations of Spacetime TheoriesPrinceton University PressPrincetonGoogle Scholar
  11. Bergia, S., Valleriani, M. 1998G. Fis39199Google Scholar
  12. Clifford M. Will, The Confrontation between General Relativity and Experiment, Living reviews http://relativity.livingreviews.org (2001).Google Scholar
  13. Clifford, M. Will 1992Phys. Rev. D45403Google Scholar
  14. Anderson, R., Vetharaniam, I., Stedman, G. E. 1998Phys. Rep.29593Google Scholar
  15. Selleri, F. 1997G. Fis.3867Google Scholar
  16. Selleri, F. 1999G. Fis.4019Google Scholar
  17. Selleri, F. 1998La scienza e i vortici del dubbioEdizioni Scientifiche ItalianeNapoliGoogle Scholar
  18. F. Selleri, Found. Phys. Lett. 10, 73 (1997); F. Selleri in Open questions in Relativistic Physics, F. Selleri, ed. (Apeiron, Montreal, 1998). Google Scholar
  19. G. Rizzi and A. Serafini, in Relativity in Rotating Frames, G .Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  20. Mansouri, R., Sexl, R. U. 1977Gen. Rel. Grav.8497515809Google Scholar
  21. Bergia, S., Guidone, M. 1997Found. Phys. Lett.1073Google Scholar
  22. Rizzi, G., Serafini, A. 2003G. Fis.443Google Scholar
  23. Møller , C. 1972The Theory of RelativityOxford University PressNew DelhiGoogle Scholar
  24. Resnick, R. 1968Introduction to Special RelativityWiley SonsNew YorkGoogle Scholar
  25. Rindler, W. 1982Introduction to Special RelativityClarendon PressOxfordGoogle Scholar
  26. A. Einstein, Ann. Phys 17, 891 (1905). English translation: The Collected Papers of Albert Einstein, J. Stachel, ed. (Princeton University Press, Princeton, 1987).Google Scholar
  27. Reichenbach, H. 1957The Philosophy of Space and TimeDoverNew YorkGoogle Scholar
  28. Cattaneo, C. 1958Nuovo Cimento10318Google Scholar
  29. Cattaneo, C. 1961Introduzione alla teoria einsteiniana della gravitazioneVeschiRomaGoogle Scholar
  30. Grøn, Ø. 1979Found. Phys.9353Google Scholar
  31. A. Serafini, Problemi di sincronizzazione in Relativitá Ristretta e Generale: aspetti operativie convenzionali, Degree Thesis (Universitá di Pisa, Pisa, 2001).Google Scholar
  32. F. Selleri, in Relativity in Rotating Frames, G .Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  33. H. A. Lorentz, Das Relativitätsprinzip, eine Sammlung von Abhandlungen (Teubner, Leipzig, 1913). English translation: The Principle of Relativity, the Collection of Original Memories (Meuthen, London, 1923).Google Scholar
  34. F. Selleri, in Relativity in Rotating Frames, G .Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  35. G. Rizzi and M. L. Ruggiero, in Relativity in Rotating Frames, G .Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics}, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  36. G. Rizzi and M. L. Ruggiero eds., Relativity in Rotating Frames, in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  37. N. Ashby, in Relativity in Rotating Frames, G. Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  38. T. Van Flandern, in Open Questions in Relativistic Physics, F. Selleri, ed. (Apeiron, Montreal, 1998).Google Scholar
  39. E. Bruni, Limiti sperimentali sulla velocità della luce su percorsi di sola andata, Degree Thesis (Università di Bologna, Bologna, 1998).Google Scholar
  40. N. Ashby, in Proceedings of the 1993 IEEE International Frequency Control Symposium (1993).Google Scholar
  41. Post, E. J. 1967Rev. Mod. Phys.39475Google Scholar
  42. Werner, S. A.,  et al. 1979Phys. Rev. Lett421103Google Scholar
  43. G. Rizzi and M. L. Ruggiero eds., Relativity in Rotating Frames, in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  44. R. D. Klauber, in Relativity in Rotating Frames, G .Rizzi and M. L. Ruggiero, eds., in the series Fundamental Theories of Physics, A. Van der Merwe, ed. (Kluwer Academic Publishers, Dordrecht, 2004).Google Scholar
  45. Selleri, F. 1996Found. Phys.26641Google Scholar
  46. Selleri, F. 1997Found. Phys. Lett1073Google Scholar
  47. Landau, L. D., Lifshitz, E. M. 1971The Classical Theory of FieldsPergamon PressNew YorkGoogle Scholar
  48. Minguzzi, E. 2003Quart. Grav202443Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Guido Rizzi
    • 1
  • Matteo Luca Ruggiero
    • 1
  • Alessio Serafini
    • 2
  1. 1.Dipartimento di Fisica, Politecnico di Torino and INFNSezione di TorinoItaly
  2. 2.Dipartimento di Fisica “E.R. Caianiello”Università di SalernoItaly

Personalised recommendations