Foundations of Physics

, Volume 34, Issue 11, pp 1725–1739 | Cite as

Clocks and the Equivalence Principle

  • Ronald R. Hatch

Einstein’s equivalence principle has a number of problems, and it is often applied incorrectly. Clocks on the earth do not seem to be affected by the sun’s gravitational potential. The most commonly accepted reason given is a faulty application of the equivalence principle. While no valid reason is available within either the special or general theories of relativity, ether theories can provide a valid explanation. A clock bias of the correct magnitude and position dependence can convert the Selleri transformation of ether theories into an apparent Lorentz transformation, which gives rise to an apparent equivalence of inertial frames. The results indicate that the special theory is invalid and that only an apparent relativity exists.


equivalence principle relativity millisecond pulsars clocks ether 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Einstein, On the influence of gravitation of the propagation of light, The Principle of Relativity, (Dover, New York, 1952), pp. 98–108. (Translated from Annalen der Physik 35, 1911).Google Scholar
  2. Will, C. M. 1986Was Einstein Right?Basic BooksNew Yorkchap. 3Google Scholar
  3. Hatch, R. R. 1999‘‘Gravitation: revising both Einstein and Newton’‘Galilean Electrodyn.106975Google Scholar
  4. Pauli, W. 1958Theory of RelativityDoverNew York15(Translated 1921)MATHGoogle Scholar
  5. Hoffmann, B. 1961‘‘Noon–midnight redshift’‘Phys. Rev.121337342ADSMathSciNetGoogle Scholar
  6. N. Ashby and J. Spilker, Global Positioning System: Theory and Applications I. Parkinson and Spilker, ed. (AIAA, Washington, 1986), p. 686, Chap. 18.Google Scholar
  7. Ashby, N., Bartotti, B. 1986‘‘Relativistic effects in local inertial frames’‘Phys. Rev. D3422462258ADSMathSciNetGoogle Scholar
  8. Lo, C. Y. 2002‘‘The existence of local Minkowski spaces is insufficient for Einstein’s equivalence principle’‘Phys. Essays15303321CrossRefMathSciNetGoogle Scholar
  9. Ciufolini, I., Wheeler, J. A. 1995Gravitation and InertiaUniversity PressPrinceton14MATHGoogle Scholar
  10. M. Friedman, Foundations of Space–Time Theories 202 (University Press, Princeton, 1963), p. 202.Google Scholar
  11. J. B. Thomas, ‘‘A relativistic analysis of clock synchronization’’, In Proceedings of the 6th Precise Time and Time Interval Planning and Management (Greenbelt, MD, 1974), pp. 425–439, 4 December.Google Scholar
  12. Hill, C. M. 1995‘‘Timekeeping and the speed of light: new insights from pulsar observations’‘Galilean Electrodyn.6310ADSGoogle Scholar
  13. Weinberg, S. 1992Dreams of a Final TheoryVintageNew York170173Google Scholar
  14. Hatch, R. R. 2001‘‘A modified Lorentz ether theory’‘Infinite Energy391423Google Scholar
  15. Mansouri, R., Sexl, R. U. 1977‘‘A test theory of special relativity: I Simultaneity and clock synchronization’‘Gen. Relat. Gravit.8497513ADSGoogle Scholar
  16. F. Selleri, ‘‘Space and time should be preferred to spacetime–-1’’, in Redshift and Gravitation in a Relativistic Universe. Rudnick, ed. (Aperion, Montreal, 2000), pp. 63–71.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  1. 1.NavCom Technology, Inc.TorranceUSA

Personalised recommendations