Advertisement

Fuzzy Optimization and Decision Making

, Volume 12, Issue 2, pp 215–229 | Cite as

Intuitionistic fuzzy linear regression analysis

  • R. Parvathi
  • C. Malathi
  • M. Akram
  • Krassimir T. Atanassov
Article

Abstract

Linear regression analysis in an intuitionistic fuzzy environment using intuitionistic fuzzy linear models with symmetric triangular intuitionistic fuzzy number (STriIFN) coefficients is introduced. The goal of this regression is to find the coefficients of a proposed model for all given input–output data sets. The coefficients of an intuitionistic fuzzy regression (IFR) model are found by solving a linear programming problem (LPP). The objective function of the LPP is to minimize the total fuzziness of the IFR model which is related to the width of IF coefficients. An illustrative example is also presented to depict the solution procedure of the IFR problem by using STriIFNs.

Keywords

Linear programming Decision analysis Uncertainty modelling Fuzzy sets Intuitionistic fuzzy regression analysis Symmetric triangular intuitionistic fuzzy numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akram M. (2011) Bipolar fuzzy graphs. Information Sciences 181: 5548–5564MathSciNetMATHCrossRefGoogle Scholar
  2. Akram M. (2012) Interval-valued fuzzy line graphs. Neural Computing and Applications 21: 145–150CrossRefGoogle Scholar
  3. Akram M., Dudek W. A. (2008) Intuitionistic fuzzy left k-ideals of semirings. Soft Computing 12: 881–890MATHCrossRefGoogle Scholar
  4. Akram M., Dudek W. A. (2012) Regular bipolar fuzzy graphs. Neural Computing and Applications 21: 197–205CrossRefGoogle Scholar
  5. Angelov, P. (1997). Optimization in an intuitionistic fuzzy environment. Fuzzy Sets and Systems, 68, 301–306.Google Scholar
  6. Atanassov K. T. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20: 87–96MathSciNetMATHCrossRefGoogle Scholar
  7. Diamond P. (1988) Fuzzy least squares. Information Sciences 46: 141–157MathSciNetMATHCrossRefGoogle Scholar
  8. Ishibuchi H. (1992) Fuzzy regression analysis. Japan Journal of Fuzzy Theory and Systems 4: 137–148MATHGoogle Scholar
  9. Kacprzyk J., Fedrizzi M. (1992) Fuzzy regression analysis. Physica-Verlag, HeidelbergMATHGoogle Scholar
  10. Kleinbaum D. G., Kupper L. L. (1978) Applied regression analysis and other multivariable methods. Wadsworth, Belmont, CAMATHGoogle Scholar
  11. Mahapatra, B. S., & Mahapatra, G. S. (2010). Intuitionistic fuzzy fault tree analysis using intuitionistic fuzzy numbers. International Mathematical Forum, 5(21), 1015–1024.Google Scholar
  12. Mahapatra G. S., Roy T. K. (2009) Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations. International Journal of Mathematical and Statistical Sciences 1(1): 31–38Google Scholar
  13. Nehi H. M. (2010) A new ranking method for intuitionistic fuzzy numbers. International Journal of Fuzzy Systems 12(1): 80–86MathSciNetGoogle Scholar
  14. Neter J., Wasserman W., Kutner M. H. (1985) Applied linear statistical models. Irwin, Homewood, ILGoogle Scholar
  15. Park, V., & Corson, S. (2001). Temporally-ordered routing algorithm (TORA), version 1, San Diego, CA: Flarion Technologies, Inc.Google Scholar
  16. Savic D., Pedrycz W. (1991) Evaluation of fuzzy regression models. Fuzzy Sets and Systems 39: 51–63MathSciNetMATHCrossRefGoogle Scholar
  17. Tanaka H., Ishibuchi H. (1991) Identification of possibilistic linear systems by quadratic membership functions of fuzzy parameters. Fuzzy Sets and Systems 41: 145–160MathSciNetMATHCrossRefGoogle Scholar
  18. Tanaka H., Uejima S., Asai K. (1982) Linear regression analysis with fuzzy model. IEEE Transactions on Systems, Man and Cybernetics 12(6): 903–907MATHCrossRefGoogle Scholar
  19. Yager R. R. (2009) Some aspects of intuitionistic fuzzy sets. Fuzzy Optimization and Decision Making 8: 67–90MathSciNetMATHCrossRefGoogle Scholar
  20. Yen K. K., Ghoshray S., Roig G. (1999) A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems 106: 167–177MathSciNetMATHCrossRefGoogle Scholar
  21. Zadeh L. A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1: 3–28MathSciNetMATHCrossRefGoogle Scholar
  22. Zadeh L. A. (1965) Fuzzy sets. Information and Control 8: 338–353MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • R. Parvathi
    • 1
  • C. Malathi
    • 2
  • M. Akram
    • 3
  • Krassimir T. Atanassov
    • 4
  1. 1.Department of MathematicsVellalar College for WomenErodeIndia
  2. 2.Department of MathematicsGobi Arts and Science CollegeGobiIndia
  3. 3.Punjab University College of Information TechnologyUniversity of the PunjabLahorePakistan
  4. 4.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations