Skip to main content

A Comment on Solari and Natiello’s Constructivist View of Newton’s Mechanics

Abstract

The present comment on Solari and Natiello’s paper (Found. Sci. 2019) values their constructivist approach to Newtonian Mechanics. My critical point concerns only the link between the concept of force and phenomena. It will be shown that the idealised form of the law of inertia created by the authors avoids criticism of the law and that this law (idealised or not) leads to the concept of force as the cause of acceleration. This concept appears in the authors’ reconstruction as an assumption. They add that this assumption must be contrasted with experiments. Following this, I address an experiment, in which the force that is taken as the cause of acceleration, is not present in the phenomenon at stake. As it thus does not satisfy the property of locality, which any cause has to, force cannot be a cause.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Planck (1916), Lenard (1936), Sommerfeld (1947), Budó (1974), Hestenes (1987), Alonso and Finn (1992), Knudsen and Hjorth (1996), Young and Freedman (2004), Nolting (2005), Gerthsen (2006), Kuypers (2012), among others. Philosphers of science have also understood force as the cause of acceleration (Cartwright 1983; Wilson 2009a, b; Massin 2017).

  2. 2.

    Jammer’s historical book on force provides an overview about the criticism of concept. Among contemporary physicists, we find Hamel 1912, Ludwig 1985 and Wilczek 2004. Philosophers of science have also defended that force does not exist (Russell 1937; Nagel 1961; Ellis 1976; Bigelow et al. 1988; Hicks and Schaffer 2017).

  3. 3.

    The criticism of the law of inertia began with Neumann (1870). Some critical remarks can be found earlier (Jacobi 1996; Riemann 1876). Neumann’s proposal to solve the law of inertia problem was criticized by Mach (1872) and gave rise to the idea of an inertial reference frame (Lange 1885). Lange (1902) reported on the discussion on the law in his paper.

  4. 4.

    ‘It must be recognized that we cannot ‘‘prove’’ the principle of inertia by an experimental test, because we can never be sure that the object under test is truly free of all external interactions, such as those due to extremely massive objects at very large distances.’ (French 1971, p. 164) We find the same claim by Planck (1916), Nielsen (1935), Becker (1954), Hanson (1963), Bergmann and Schaefer (1998), Scobel et al. (2002) and Stachel (2005).

  5. 5.

    Wilson (2013) claims that the law of inertia is not ambiguous only if ‘body’ in Newton’s formulation (Newton 1999, p. 416) means ‘isolated point mass’.

  6. 6.

    Norton 2003, p. 17.

  7. 7.

    Cartwright (1983, p. 66), Wilson (2009a, pp. 535–536, b) and Massin (2017, p. 829).

  8. 8.

    Historians of science have disagreed on whether Newton’s second law is F=ma (Truesdell 1960; Pourciau 2006; Nauenberg 2012; Pisano and Capecchi 2013; Coelho 2018).

  9. 9.

    Halliday et al. 1993, p. 117.

  10. 10.

    Halliday et al. (1993), Bueche and Jerde (1995) and Serway and Jewett (2004).

References

  1. Alonso, M., & Finn, E. J. (1992). Physics. Wokingham: Addison-Wesley.

    Google Scholar 

  2. Atwood, G. (1784). A treatise on rectilinear motion and rotation of bodies: With description of original experiments relative to the subject. Cambridge: Merril and Deighton.

    Google Scholar 

  3. Becker, R. A. (1954). Introduction to theoretical mechanics. New York: McGraw-Hill.

    Google Scholar 

  4. Bergmann, L., & Schaefer, C. (1998). Lehrbuch der Experimentalphysik (11th ed., Vol. I). Berlin: de Gruyter.

    Google Scholar 

  5. Bigelow, J., Ellis, B., & Pargetter, R. (1988). Forces. Philosophy of Science, 55, 614–630.

    Google Scholar 

  6. Budó, A. (1974). Theoretische Mechanik (7th ed.). Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  7. Bueche, F. J., & Jerde, D. (1995). Principles of physics. New York: McGraw-Hill.

    Google Scholar 

  8. Cartwright, N. (1983). How the laws of physics lie?. Oxford: Oxford University Press.

    Google Scholar 

  9. Coelho, R. L. (2018). On the deduction of Newton’s second law. Acta Mechanica, 229, 2287–2290.

    Google Scholar 

  10. Ellis, B. (1976). The existence of forces. Studies in History and Philosophy of Science, 7, 171–185.

    Google Scholar 

  11. French, A. P. (1971). Newtonian mechanics. New York: W. W. Norton.

    Google Scholar 

  12. Gerthsen, C. (2006). Physik (22nd ed.). Berlin: Springer.

    Google Scholar 

  13. Halliday, D., Resnick, R., & Walker, J. (1993). Fundamentals of physics. New York: Wiley.

    Google Scholar 

  14. Hamel, G. (1912). Elementare mechanik. Leipzig: Teubner.

    Google Scholar 

  15. Hanson, N. (1963). The law of inertia: A philosopher’s touchstone. Philosophy of Science, 30, 107–121.

    Google Scholar 

  16. Hestenes, D. (1987). New foundations for classical mechanics (republished). Dordrecht: D. Reidel.

    Google Scholar 

  17. Hicks, M. T., & Schaffer, J. (2017). Derivative properties in fundamental laws. British Journal for the Philosophy of Science, 68, 411–450.

    Google Scholar 

  18. Jacobi, C. (1996). In H. Pulte (Ed.), Vorlesungen über analytische Mechanik Berlin 1847/48, Braunschweig, Vieweg.

  19. Knudsen, J. M., & Hjorth, P. G. (1996). Elements of Newtonian mechanics (2nd ed.). Berlin: Springer.

    Google Scholar 

  20. Kuypers, F. (2012). Klassische mechanik (9th ed.). Weinheim: Wiley.

    Google Scholar 

  21. Lange, L. (1885). Ueber die Wissenschaftliche Fassung des Galilei’schen Beharrungsgesetzes. Philosophische Studien, 2, 266–297.

    Google Scholar 

  22. Lange, L. (1902). Das inertialsystem vor dem Forum der Naturforschung. Philosophische Studien, 20, 1–71.

    Google Scholar 

  23. Lenard, P. (1936). Deutsche physik (Vol. 1). Muenchen: Lehmanns.

    Google Scholar 

  24. Ludwig, G. (1985). Einführung in die Grundlagen der Theoretischen Physik (3rd ed., Vol. 1). Braunschweig: Vieweg.

    Google Scholar 

  25. Mach, E. (1872). Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit (reprint, 1909). Lepizig: Barth.

    Google Scholar 

  26. Massin, O. (2017). The composition of forces. British Journal for the Philosophy of Science, 68, 805–846.

    Google Scholar 

  27. Nagel, E. (1961). Structure of science: Problems in the logic of scientific explanation. New York: Harcourt, Brace & World.

    Google Scholar 

  28. Nauenberg, M. (2012). Comment on Is Newton’s second law really Newton’s? By Bruce Pourciau. American Journal of Physics, 80, 931–933.

    Google Scholar 

  29. Neumann, C. (1870). Ueber die Principien der Galilei-Newtonschen Theorie. Leipzig: Teubner.

    Google Scholar 

  30. Newton, I. (1999). The principia (I. Bernard Cohen & A. Whitman, Trans.). Berkeley, CA: University of California Press.

  31. Nielsen, J. (1935). Vorlesungen über elementare Mechanik (W. Fenchel, Trans.). Berlin: Springer.

  32. Nolting, W. (2005). Grundkurs: Theoretische Physik (7th ed., Vol. 1). Braunschweig: Vieweg.

    Google Scholar 

  33. Norton, J. D. (2003). Causation as folk science. Philosophers’ Imprint, 3(4), 1–22.

    Google Scholar 

  34. Pisano, R., & Capecchi, D. (2013). Conceptual and mathematical structures of mechanical science between 18th and 19th centuries. Almagest, 2(4), 86–121.

    Google Scholar 

  35. Planck, M. (1916). Einführung in die Allgemeine Mechanik. Leipzig: S Hirzel.

    Google Scholar 

  36. Pourciau, B. (2006). Newton‘s interpretation of Newton‘s second law. Archive for History of Exact Sciences, 60, 157–207.

    Google Scholar 

  37. Riemann, B. (1876). Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlass. Unter Mitwirkung von R. Dedekind hg. von H. Weber. Leipzig: Teubner.

  38. Russell, B. (1937). Principles of mathematics (2nd ed.). London: Allen & Unwin.

    Google Scholar 

  39. Scobel, W., Lindström, G., & Langkau, R. (2002). Mechanik, Fluiddynamik und Wärmelehre (2nd ed.). Berlin: Springer.

    Google Scholar 

  40. Serway, R., & Jewett, J. W. (2004). Physics for scientists and engineers (6th ed.). Belmont, CA: Thomson.

    Google Scholar 

  41. Solari, H. G., & Natiello, M. A. (2019). A constructivista view of Newton’s mechanics. Foundations of Science, 24, 307–341.

    Google Scholar 

  42. Sommerfeld, A. (1947). Vorlesungen über Theoretische Physik (3rd ed., Vol. I). Leipzig: Geest & Portig.

    Google Scholar 

  43. Stachel, J. (2005). Development of the concepts of space, time and space-time from Newton to Einstein. In A. Ashtekar (Ed.), 100 years of relativity/space-time structure: Einstein and beyond (pp. 3–36). Singapore: World Scientific.

    Google Scholar 

  44. Truesdell, C. (1960). A program toward rediscovering the rational mechanics of the age of reason. Archive for History of Exact Sciences, 1, 3–36.

    Google Scholar 

  45. Wilczek, F. (2004). Whence the force of F = ma? I: Culture shock. Physics Today, 57, 11–12.

    Google Scholar 

  46. Wilson, A. (2009a). Dispositions-manifestations and reference-frames. Dialectica, 63, 591–601.

    Google Scholar 

  47. Wilson, J. (2009b). The causal argument against component forces. Dialectica, 63, 525–554.

    Google Scholar 

  48. Wilson, M. (2013). What is ‘classical mechanics’ anyway? In R. Batterman (Ed.), The Oxford handbook of philosophy of physics (pp. 43–106). Oxford: Oxford University Press.

    Google Scholar 

  49. Young, H., & Freedman, R. (2004). Sears and Zemansky’s University physics (11th ed.). San Francisco: P. Addison-Wesley.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Lopes Coelho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopes Coelho, R. A Comment on Solari and Natiello’s Constructivist View of Newton’s Mechanics. Found Sci 25, 703–710 (2020). https://doi.org/10.1007/s10699-020-09651-7

Download citation

Keywords

  • Law of inertia
  • Force
  • Cause
  • Foundations of mechanics