A Proposal for a Coherent Ontology of Fundamental Entities

  • Diego Romero-Maltrana
  • Federico Benitez
  • Cristian Soto
Article
  • 5 Downloads

Abstract

We argue that the distinction between framework and interaction theories should be taken carefully into consideration when dealing with the philosophical implications of fundamental theories in physics. In particular, conclusions concerning the nature of reality can only be consistently derived from assessing the ontological and epistemic purport of both types of theories. We put forward an epistemic form of realism regarding framework theories, such as Quantum Field Theory. The latter, indeed, informs us about the general properties of quantum fields, laying the groundwork for interaction theories. Yet, concerning interaction theories, we recommend a robust form of ontological realism regarding the entities whose existence is assumed by these theories. As an application, we refer to the case of the Standard Model, so long as it has proved to successfully inform us about the nature of various sorts of fundamental particles making up reality. In short, although we acknowledge that both framework and interaction theories partake in shaping our science-based view of reality, and that neither would do by itself the work we expect them to accomplish together, our proposal for a coherent ontology of fundamental entities advances a compromise between two forms of realism about theories in each case.

Keywords

Principle theory Constructive Theory Ontology Quantum Field Theory Particles 

References

  1. Bain, J. (2000). Against particle/field duality: Asymptotic particle states and interpolating fields in interacting qft (or: Who’s afraid of haag’s theorem?). Erkenntnis, 53(3), 375–406.CrossRefGoogle Scholar
  2. Baker, D. J. (2009). Against field interpretations of quantum field theory. The British Journal for the Philosophy of Science, 60(3), 585–609.CrossRefGoogle Scholar
  3. Clifton, R., Bub, J., & Halvorson, H. (2003). Characterizing quantum theory in terms of information-theoretic constraints. Foundations of Physics, 33(11), 1561–1591.CrossRefGoogle Scholar
  4. Collins, J . C. (1984). Renormalization: An introduction to renormalization, the renormalization group and the operator-product expansion. Cambridge: Cambridge university press.CrossRefGoogle Scholar
  5. Costello, K. (2011). Renormalization and effective field theory (Vol. 170). Providence: American Mathematical Society.Google Scholar
  6. Eddington, A. (2012). The nature of the physical world: Gifford lectures (1927). Cambridge: Cambridge University Press.Google Scholar
  7. Egg, M., Lam, V., & Oldofredi, A. (2017). Taking particle physics seriously: A critique of the algebraic approach to quantum field theory. Foundations of Physics, 47, 453–466.CrossRefGoogle Scholar
  8. Einstein, A. (1919). Time, space, and gravitation. Times (London), pp. 13–14.Google Scholar
  9. Faye, J. (2014). Copenhagen interpretation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Fall 2014 edition). http://plato.stanford.edu/archives/fall2014/entries/qm-copenhagen/.
  10. Flores, F. (1999). Einstein’s theory of theories and types of theoretical explanation. International Studies in the Philosophy of Science, 13(2), 123–134.CrossRefGoogle Scholar
  11. Fraser, D. (2008). The fate of particles in quantum field theories with interactions. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 39(4), 841–859.CrossRefGoogle Scholar
  12. French, S. (2014). The structure of the world: Metaphysics and representation. Oxford: OUP.CrossRefGoogle Scholar
  13. Goldstein, S. (2013). Bohmian mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Spring 2013 edition). http://plato.stanford.edu/archives/spr2013/entries/qm-bohm/.
  14. Griffiths, R. B. (2014). The consistent histories approach to quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Fall 2014 edition). https://plato.stanford.edu/entries/qm-consistent-histories/.
  15. Haag, R. (2012). Local quantum physics: Fields, particles, algebras. Berlin: Springer.Google Scholar
  16. Howard, D. A. (2015). Einstein’s philosophy of science. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Winter 2015 edition) Google Scholar
  17. Kragh, H. (2002). Quantum generations: A history of physics in the twentieth century. Princeton: Princeton University Press.Google Scholar
  18. Ladyman, J. (1998). What is structural realism? Studies in History and Philosophy of Science, 29, 409–420.CrossRefGoogle Scholar
  19. Ladyman, J., Ross, D., Spurrett, D., & Collier, J. G. (2007). Every thing must go: Metaphysics naturalized. Oxford University Press on Demand.Google Scholar
  20. Lange, M. (2001). The most famous equation. The Journal of philosophy, 98(5), 219–238.CrossRefGoogle Scholar
  21. Laudisa, F., & Rovelli, C. (2013). Relational quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Summer 2013 edition). http://plato.stanford.edu/entries/qm-relational/.
  22. Peskin, M. E. (1995). An introduction to quantum field theory. Westview Press.Google Scholar
  23. Romero-Maltrana, D. (2015). Symmetries as by-products of conserved quantities. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52, 358–368.CrossRefGoogle Scholar
  24. Vaidman, L. (2012). Role of potentials in the Aharonov–Bohm effect. Physical Review A, 86, 040101.CrossRefGoogle Scholar
  25. Vaidman, L. (2016). Many-worlds interpretation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Spring 2016 edition). http://plato.stanford.edu/archives/sum2002/entries/qm-manyworlds/.
  26. Wallace, D. (2006). In defence of naiveté: The conceptual status of lagrangian quantum field theory. Synthese, 151, 33.CrossRefGoogle Scholar
  27. Wallace, D. (2011). Taking particle physics seriously: A critique of the algebraic approach to quantum field theory. Studies in History and Philosophy of Modern Physics, 42, 116.CrossRefGoogle Scholar
  28. Weinberg, S. (1996). The quantum theory of fields (Vol. 2). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  29. Weinberg, S. (2005). The quantum theory of fields (Vol. 1). Cambridge, UK: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Diego Romero-Maltrana
    • 1
    • 2
  • Federico Benitez
    • 3
    • 5
  • Cristian Soto
    • 4
  1. 1.Instituto de FísicaPontificia Universidad Católica de ValparaísoCurauma, ValparaísoChile
  2. 2.Instituto de Filosofía y Ciencias de la ComplejidadÑuñoa, SantiagoChile
  3. 3.Institute of PhysicsUniversity of BernBernSwitzerland
  4. 4.Universidad de ChileÑuñoa, Región MetropolitanaChile
  5. 5.Université de Lausanne, Faculté des lettres, Section de philosophieLausanneSwitzerland

Personalised recommendations