Foundations of Science

, Volume 20, Issue 4, pp 447–478 | Cite as

Communicative Rationality of the Maxwellian Revolution

  • Rinat M. Nugayev


It is demonstrated that Maxwellian electrodynamics was created as a result of the old pre-Maxwellian programmes’s reconciliation: the electrodynamics of Ampère–Weber, the wave theory of Young–Fresnel and Faraday’s programme. Maxwell’s programme finally superseded the Ampère–Weber one because it assimilated the ideas of the Ampère–Weber programme, as well as the presuppositions of the programmes of Young–Fresnel and Faraday. Maxwell’s victory became possible because the core of Maxwell’s unification strategy was formed by Kantian epistemology. Maxwell put forward as a basic synthetic principle an idea that radically differed from that of rival approaches by its open, flexible and contra-ontological character. “Action at a distance”, “incompressible fluid”, “molecular vortices” were contrived analogies for Maxwell, capable only of directing the researcher to the “right” mathematical relations Kantian epistemology subsequently enabled Helmholtz and Hertz to arrive at a version of Maxwell’s theory that served as a heuristical basis for the discovery of radio waves. Finally, though neither of Einstein’s relativistic ideas came directly from Kant, they were made possible by the Kantian worldview that had permeated Einstein’s thinking. The Maxwellian revolution can be described in terms of Habermas’s communicative rationality encouraging the establishment of mutual understanding between the various scientific communities. Maxwell’s programme constituted a progressive step in respect to its rivals because it constituted a basis of communication and interpenetration between the main paradigms of 19th century physics.


Maxwell Scientific revolution Kant Einstein  Communicative rationality 


  1. Achinstein, P. (2010). What to do if you want to defend a theory you cannot prove: A method of “physical speculation”. The Journal of Philosophy, 107, 35–55.CrossRefGoogle Scholar
  2. Audi, R. (Ed.). (1999). The cambridge dictionary of philosophy. Cambridge: Cambridge University Press.Google Scholar
  3. Austin, J. (1962). How to do things woth words. Oxford: Oxford University Press.Google Scholar
  4. Beller, M. (2000). Kant’s impact on Einstein’s thought. In D. Howard & J. Stachel (Eds.), Einstein: The formative years, 1879–1909. Boston: Birkhauser. Chapter 4.Google Scholar
  5. Boltzmann, L. (1895). Über Faraday’s Kraftlinien, von James Clerk Maxwell. Herausgegeben von. L. Boltzmann. Leipzig: W. Engelmann.Google Scholar
  6. Born, M. (1971). The Born-Einstein letters: Correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955. I. Born translation. NY: Walker and Company.Google Scholar
  7. Buchwald, J. (1994). The creation of scientific effects: Heinrich Hertz and electric waves. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  8. Campbell, L., & Garnett, W. (1882). The life of James Clerk Maxwell. L. Macmillan.Google Scholar
  9. Chalmers, A. (2007). What is this thing called science? University of Queensland Press.Google Scholar
  10. Chalmers, A. (2001). Maxwell, mechanism and the nature of electricity. Physics in Perspective, 3(4), 425–438.CrossRefGoogle Scholar
  11. D’Agostino, S. (1975). Hertz’s researches on electromagnetic waves. Historical Studies in the Physical Sciences, 6, 261–323.CrossRefGoogle Scholar
  12. D’Agostino, S. (1984). Maxwell’s dimensional approach to the velocity of light: rise and fall of a paradigm. In D’Agostino, S., & Petruccioli, S. (Eds.) Mathematical models and physical theories. Rome: Academia nazionale Della Scienze.Google Scholar
  13. Darrigol, O. (2001). Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.Google Scholar
  14. Einstein, A. (1905a) Über eine die Erzeugung und verwandlung des Lichtes betreffenden hewristischen Lesictpunkt. Annalen der Physik 17, 132–48. Translated by Anna Beck. In: The collected papers of Albert Einstein, vol. 1. The early years, 1879–1902. Princeton University Press, Princeton, New Jersey, 1987.Google Scholar
  15. Einstein, A. (1905b) Zur Elektrodynamik bewegter Körper. Annalen der Physik 17, 891–921. English translation. In The principle of relativity, Dover, New York, 1923. See also the translation of Anna Beck. In The collected papers of Albert Einstein, vol. 2. The Swiss years: writings, 1900–1909. Princeton University Press, Princeton, New Jersey, 1989, pp. 140–171.Google Scholar
  16. Einstein, A. (1909) Über die Entwicklung unserer Anschaungen uber das Wesen und die Konstitution der Strahlung. Physikalische Zeitschrift 10, 817–825. Translated by Anna Beck. In The collected papers of Albert Einstein, vol. 1. The early years, 1879–1902. Princeton University Press, Princeton, New Jersey, 1987.Google Scholar
  17. Einstein, A. (1931). Maxwell’s influence on the evolution of the idea of physical reality. In James Clerk Maxwell: A commemorative volume. Cambridge: Cambridge University Press.Google Scholar
  18. Einstein, A. (1949). Autobiographical notes. In: Schlipp, P.A. (Ed.). Albert Einstein: philosopher scientist, vol.1, Open Court, La Salle, Illinois, pp. 3–94.Google Scholar
  19. Einstein, A (1987). The collected papers of Albert Einstein, vol. 1. The early years, 1879–1902. In Stachel, J. et al. (Eds.). Princeton: Princeton University Press.Google Scholar
  20. Feuer, L. (1974). Einstein and the generations of science. NY: Basic Books. Inc.Google Scholar
  21. Feynman, R. P., Leighton, R., & Sands, M. (1964). The Feynman lectures on physics, 2 edn. Addison Wesley; 2005.Google Scholar
  22. Galison, P. (1987). How experiments end. Chicago: The University of Chicago Press.Google Scholar
  23. Habermas, J. (1987) An alternative way out of the philosophy of the subject: Communicative versus subject-centered reason. In The philosophical discourse of modernity. Cambridge, MA: MIT Press.Google Scholar
  24. Habermas, J. (1995). The theory of communicative action. Reason and the rationalization of society (Vol. 1). Boston: Beacon Press.Google Scholar
  25. Harman, P. (2001). The natural philosophy of J.C. Maxwell. Cambridge: Cambridge University Press.Google Scholar
  26. Helmholtz, H. [1870] Wissenschaftlische Abhandlungen, Barth, 1882, vol. 1, pp. 611–628.Google Scholar
  27. Hertz, H. [1884]. On the relations between Maxwell’s fundamental electromagnetic equations and the fundamental equations of the opposing electromagnetics. In Heinrich Hertz. Miscellaneous Papers. L., Macmillan and Co, 1896, pp. 273–290.Google Scholar
  28. Hertz, H. [1887]. On very rapid electrical oscillations. In Heinrich Rudolph Hertz. Electrical Waves, L., 1893, pp. 29–53.Google Scholar
  29. Hertz, H. [1888a]. On the finite velocity of propagation of electromagnetic actions. In Heinrich Rudolph Hertz. Electrical Waves, L., 1893, pp. 107–123.Google Scholar
  30. Hertz, H. [1888b]. On electromagnetic waves in air and their reflection. In Heinrich Rudolph Hertz. Electrical waves, L.: Macmillan, 1893, pp. 124–136.Google Scholar
  31. Hertz, H. [1889a]. The forces of electric oscillations, treated according to Maxwell’s theory. In Heinrich Rudolph Hertz. Electric Waves., L.: Macmillan, 1893, pp. 137–159.Google Scholar
  32. Hertz, H. [1890] On the fundamental equations of electromagnetics for bodies at rest. In Heinrich Rudolph Hertz. Electric Waves., L.: Macmillan, 1893, pp. 195–240.Google Scholar
  33. Hertz, H. (1893). Electric waves. L.: Macmillan.Google Scholar
  34. Hertz, H. (1899). The principles of mechanics presented in a new form (translated by D.E. Jones). L.: Macmillan.Google Scholar
  35. Hesse, M. (1973). Logic of discovery in Maxwell’s electromagnetic theory. In R. N. Giere & R. S. Westfall (Eds.), Foundations of scientific method: the nineteenth century (pp. 86–114). Bloomington: Indiana University Press.Google Scholar
  36. Hirosige, T. (1976). The ether problem, the mechanistic world view and the origins of the theory of relativity. Historical Studies in the Physical Sciences, 7, 3–82.CrossRefGoogle Scholar
  37. Holton, G. (1968). Mach, Einstein and the search for reality. Daedalus, 97, 636–673.Google Scholar
  38. Hon, G., & Goldstein, B. R. (2012). Maxwell’s contrived analogy: An early version of the methodology of modeling. Studies in History and Philosophy of Modern Physics, 43, 236–257.CrossRefGoogle Scholar
  39. Howard, D. (1994). Einstein, Kant and the origins of logical positivism. In W. Salmon & G. Wolters (Eds.), Language, logic and the structure of scientific theories : The Carnap–Reichenbach centennial (pp. 45–105). Pittsburgh: University of Pittsburgh Press.Google Scholar
  40. Hunt, B. (2005). The Maxwellians. Ithaca, NY: Cornell University Press.Google Scholar
  41. Kant, I. [1783]. Prolegomena to any future metaphysics that will be able to come forward as science. (Transl. by Gary Hatfield). In Immanuel Kant. Theoretical philosophy after 1781. Cambridge: Cambridge University Press, 2002.Google Scholar
  42. Kant, I. [1787]. The critique of pure reason, 2nd ed. Translated by Norman Kemp Smith. London: Macmillan & Co, 1929. Rpt.: N.Y.: St. Martin’s Press, 1965.Google Scholar
  43. Kostro, L. (1988). An outline of the history of Einstein’s relativistic ether concept. In J. Eisenstaedt & A. J. Kox (Eds.), Studies in the history of general relativity (pp. 260–280). Boston: Birkhauser.Google Scholar
  44. Kuhn, T. (1977). Objectivity, value judgement and theory choice. In The essential tension. Chicago: University of Chicago Press.Google Scholar
  45. Lakatos, I. (1978). The methodology of scientific research programmes. Philosophical papers, volume 1. In J. Worral, & G. Currie (Eds.), Cambridge: Cambridge University Press.Google Scholar
  46. Mahon, B. (2003). The man who changed everything. The life of James Clerk Maxwell. London: Wiley.Google Scholar
  47. Maxwell, J. ([1858/1890]1952). On Faraday’s lines of force. Transactions of the Cambridge Philosophical Society, 1856, vol. X, part 1. Reprinted. In The Scientific Papers of James Clerk Maxwell, [1890] 1952, vol. 1, pp. 155–229.Google Scholar
  48. Maxwell, J. ([1861-1862/1890]1952) On physical lines of force. Philosophical magazine, Series 4, 21,161–175,281–291. Philosophical Magazine, Series 4,23,12–24,89–95. Reprinted. In: The Scientific Papers of James Clerk Maxwell, [1890], 1952, 1, 451–513.Google Scholar
  49. Maxwell, J. ([1865/1890]1952). A dynamical theory of electromagnetic field. Philosophical Transactions of the Royal Society of London 155, 459–512 (read December 8, 1864). Reprinted. In: The Scientific Papers of James Clerk Maxwell, [1890] 1952, 1, pp. 526–597.Google Scholar
  50. Maxwell, J. ([1868/1890] 1952). Note on the electromagnetic theory of light. Philosophical Transactions, vol. CLVIII. Reprinted in: The Scientific Papers of James Clerk Maxwell, 1890, 2, pp. 137–142.Google Scholar
  51. Maxwell, J. ([1873/1891] 1954). A treatise on electricity and magnetism. 2 vols (3rd ed.). New York: Dover.Google Scholar
  52. Maxwell, J. ([1873/1890] 1952). On action at a distance. Reprinted in: The Scientific Papers of James Clerk Maxwell, 1890, vol. 1, pp. 315–20.Google Scholar
  53. Maxwell, J. ([1877/1890] 1952). Hermann Ludwig Ferdinand Helmholtz. Nature, vol. XV. Reprinted. In The Scientific Papers of James Clerk Maxwell, 1890, vol. 2, pp. 592–59.Google Scholar
  54. Mertz, J. (1964). A history of European thought in the Nineteenth Century, vol. 4. Edinburgh: William Blackwood and Sons, 1903–1912. Vols 1 and 2 reprinted as “A History of European Scientific Thought in the Nineteenth Century. NY: Dover.Google Scholar
  55. Morrison, M. (2000). Unifying scientific theories: Physical concepts and mathematical structures. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  56. Nugayev, R. (1985a). A study of theory unification. The British Journal for the Philosophy of Science, 36, 159–173.CrossRefGoogle Scholar
  57. Nugayev, R. (1985b). The history of quantum theory as a decisive argument favoring Einstein over Lorentz. Philosophy of Science, 52, 44–63.CrossRefGoogle Scholar
  58. Nugayev, R. M. (1987). Genesis and structure of models in modern relativistic gravitation theories. International Studies in the Philosophy of Science, 2, 84–104.CrossRefGoogle Scholar
  59. Nugayev, R. (1999a). Einstein’s revolution : A case study in communicative rationality. Foundations of Science, 4(2), 155–204.CrossRefGoogle Scholar
  60. Nugayev, R. (1999b). Reconstruction of mature theory change: A theory—change model. Frankfurt am Main: Peter Lang.Google Scholar
  61. Nugayev, R. M. (2000). Early quantum theory genesis: Reconciliation of Maxwellian electrodynamics, thermodynamics and statistical mechanics. Annales de la Fondation Louis De Broigle, 25, 337–362.Google Scholar
  62. Nugayev, R. M. (2002). Basic paradigm change. The conception of communicative rationality. Russian Studies in Philosophy (NY), 41(2), 23–36.CrossRefGoogle Scholar
  63. Nugayev, R. (2013). The Ptolemy–Copernicus transition: Intertheoretic context. Almagest, 4(1), 96–119.CrossRefGoogle Scholar
  64. Olson, R. (1975). Scottish philosophy and British physics, 1750–1880: A study in the foundations of the victorian scientific style. Princeton, NJ: Princeton University Press.Google Scholar
  65. Ono, Y. (1983). Einstein’s speech at Kyoto University, December 14, 1922. NTM -Schriftenreihe fur geschichte der Naturwissenschaften, Technik und Medizin, 20, 25–28.Google Scholar
  66. Palmquist, S. (2011). The Kantian Grounding of Einstein’s Worldview. Polish Journal of Philosophy, 5(1), 97–116.CrossRefGoogle Scholar
  67. Patton, L. (2009). Signs, toy models and the a priori: from Helmholtz to Wittgenstein. In Studies in history and philosophy of science, pp. 281–289.Google Scholar
  68. Pickering, A. (1985). Constructing Quarks. A sociological history of particle physics. Chicago: The University of chicago Press.Google Scholar
  69. Sengupta, D., & Sarkar, T. (2003). Maxwell, Hertz, the Maxwellians and the early history of electromagnetic waves. IEEE Antennas and Propagation Magazine, 45(2), 12–19.CrossRefGoogle Scholar
  70. Shapiro, I. (1973). On the history of the discovery of the Maxwell equations. Soviet Physics Uspekhi, 15(5), 651–659.CrossRefGoogle Scholar
  71. Siegel, D. (1991). Innovation in Maxwell’s electromagnetic theory: Molecular vortices, displacement current, and light. Cambridge: Cambridge University Press.Google Scholar
  72. Smirnov-Rueda, R. (2001). Were Hertz’s “crucial experiments” on propagation of electromagnetic interaction conclusive? In A. E. Chubykalo, V. Pope, & R. Smirnov-Rueda (Eds.), Instantaneous action at a distance in modern physics: Pro and contra (pp. 57–69). NY: Nova Science Publishers.Google Scholar
  73. Stepin, V. (2005). Theoretical knowledge, volume 326 of synthese library. Berlin: Springer.Google Scholar
  74. Ter Haar, D. (1967). The old quantum theory. Oxford: Pergamon Press.Google Scholar
  75. Whewell, W. (1847). The philosophy of inductive sciences, founded upon their history, in 2 volumes. Second edition. L., John W. Parker and Son.Google Scholar
  76. Whittaker, E. (1910). A history of the theories of aether and electricity : From the age of descartes to the close of the nineteenth century. L. NY: Longmans, Green and Co.Google Scholar
  77. Zahar, E. (1989). Einstein’s revolution : A study in heuristic. La Salle: Open Court.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Volga Region State Academy of Physical Culture, Sport and TourismKazanRepublic of Tatarstan, Russian Federation
  2. 2.KazanRepublic of Tatarstan, Russian Federation

Personalised recommendations