Foundations of Science

, Volume 19, Issue 1, pp 89–113 | Cite as

Epistemic Justification and Operational Symbolism



By the end of the twelfth century in the south of Europe, new methods of calculating with Hindu-Arabic numerals developed. This tradition of sub-scientific mathematical practices is known as the abbaco period and flourished during 1280–1500. This paper investigates the methods of justification for the new calculating procedures and algorithms. It addresses in particular graphical schemes for the justification of operations on fractions and the multiplication of binomial structures. It is argued that these schemes provided the validation of mathematical practices necessary for the development towards symbolic reasoning. It is shown how justification schemes compensated for the lack of symbolism in abbaco treatises and at the same time facilitated a process of abstraction.


Abbaco Fractions Justification Symbolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdeljaouad, M. (2002). Le manuscrit mathématique de Jerba: Une pratique des symboles algébriques maghrébins en pleine maturité. Septième Colloque Maghrébin sur l’Histoire des Mathématiques Arabes (Marrakech, 30–31 mai et 1er juin 2002).Google Scholar
  2. Allard A. (1992) Muhammad Ibn Musa Al-Khwarizmi Le Calcul Indien (Algorismus). Versions Latines Du Xiie Siècle (Collection d’Etudes Classiques). Peeters Publishers, NamurGoogle Scholar
  3. Arrighi, G. (eds) (1964) Paolo Dell’Abaco, Trattato d’aritmetica. Domus Galilaeana, PisaGoogle Scholar
  4. Arrighi, G. (1965–1967). Un ‘programma’ di didattica di matematica nella prima metá del Quattrocento (dal codice 2186 della Biblioteca Riccardiana di Firenze). Atti e Memorie dell’Accademia Petrarca di Lettere, Art e Scienze di Arezzo, nuova serie, 38, 112–128.Google Scholar
  5. Arrighi, G. (Ed.). (1973). Libro d’abaco. Dal Codice 1754 (sec. XIV) della Biblioteca Statale di Lucca. Cassa di Risparmio di Lucca, Lucca.Google Scholar
  6. Arrighi, G. (Ed.). (1985). Giovanni de’Danti Aretino,Tractato de l’algorisimo. Dal Cod. Plut. 30. 26 (sec. XIV) della Biblioteca Medicea Laurenziana di Firenze. Atti e Memorie della Accademia Petrarca di Lettere, Arti e Scienze, nuova serie 47, 3–91.Google Scholar
  7. Arrighi, G. (Ed.). (1987). Paolo Gherardi, Opera mathematica: Libro di ragioni—Liber habaci. Codici Magliabechiani Classe XI, nn. 87 e 88 (sec. XIV) della Biblioteca Nazionale di Firenze, Pacini-Pazzi, Lucca.Google Scholar
  8. Arrighi, G. (Ed.). (1989). Maestro Umbro (sec. XIII), Livero de l’abbecho. (Cod. 2404 della Biblioteca Riccardiana di Firenze). Bollettino della Deputazione di Storia Patria per l’Umbria 86, 5–140.Google Scholar
  9. Boncompagni, B. (1857). Scritti di Leonardo Pisano, matematico del secolo decimoterzo, pubblicati da Baldassarre Boncompagni. Roma, Tipografia delle Scienze Matematiche e Fisiche, 1857–1862. Volume I, Liber Abbaci.Google Scholar
  10. Burnett C. (2006) The semantics of Indian numerals in Arabic, Greek and Latin. Journal of Indian Philosophy 34: 15–30CrossRefGoogle Scholar
  11. Calzoni, G., Cavazzoni, G. (eds) (1996) Tractatus Mathematicus ad Discipulos Perusinos. Città di Castello, PerugiaGoogle Scholar
  12. Cajori, F. (1928–1929). A history of mathematical notations (2 Vols). La Salle, Il: Open Court Publishing. (reprinted by Dover, 1993).Google Scholar
  13. Cardano, G. (1545). Ars Magnae, sive, De regulis algebraicis lib. unus: qui & totius operis de arithmetica, quod opus perfectum inscripsit, est in ordine decimus. In N. Johann Petreius (Ed.), (English translation by Witmer R. T. (1968) Ars magna or the rules of algebra. Cambridge, MA: M.I.T. Press. Reprinted by Dover Publications, New York, 1993).Google Scholar
  14. Cassinet, J. (2001). Une arithmétique toscane en 1334 en Avignon dans la citè des papes et de leurs banquiers florentins. In Commerce et mathématiques du moyen âge à la renaissance, autour de la Méditerranée(pp. 105–128). Actes du Colloque International du Centre International d’Histoire des Sciences Occitanes (Beaumont de Lomagne, 13–16 mai 1999). Éditions du C.I.S.H.O.,Toulouse.Google Scholar
  15. Chemla K. (1997) What is at stake in mathematical proofs from third-century China?. Science in Context 10(2): 227–251CrossRefGoogle Scholar
  16. Chemla K. (2003) Generality above abstraction: The general expressed in terms of the paradigmatic in mathematics in ancient China. Science in Context 16: 413–458CrossRefGoogle Scholar
  17. Chemla K. (2005) The interplay between proof and algorithm in 3rd century China: The operations as prescription of computation and the operation as argument. In: Mancosu P., Jorgensen K. F., Pedersen S. A. (eds) Visualization, explanation and reasoning styles in mathematics. Springer, Heidelberg, pp 123–145CrossRefGoogle Scholar
  18. Chemla, K., & Shuchun, G. (2004). Les Neuf Chapitres, le classique mathématique de la Chine ancienne et ses commentaires. Traduction française avec des addenda détaillés et une édition commentée du texte chinois du livre et de son commentaire. Paris, Dunod, 2004.Google Scholar
  19. Cifoletti, G.(1993). Mathematics and rhetoric: Peletier and Gosselin and the making of the French algebraic tradition. PhD, Princeton University 0181, Dissertation Abstracts International. 53, 4061-A.Google Scholar
  20. Djebbar A. (1992) Le traitement des fractions dans la tradition mathématique arabe du Maghreb. In: Benoit P., Chemla K., Ritter J. (eds) Histoire de fractions, fractions d’histoire. Birkhäuser, Berlin, pp 223–245Google Scholar
  21. Folkerts, M. (1997). Die älteste lateinische Schriftüber das indische Rechnen nachal-Ḫwārizmī. Bayerische Akademie der Wissenschaften, Klasse, n.F., 113, München.Google Scholar
  22. Franci, R. (2001). (Ed.) Maestro Dardi (sec. XIV) Aliabraa argibra. Dal manoscritto I.VII.17 della Biblioteca Comunale di Siena. Quaderni del Centro Studi della Matematica Medioevale (Vol. 26). Siena: Università di Siena.Google Scholar
  23. Friedlein G. (1869) Die Zahlzeichen und das elementare Rechnen der Griechen und Römer und christlichen Abendlandes vom 7 bis 13 Jahrhundert. Verlag von Andreas Deichert, ErlangenGoogle Scholar
  24. Goldthwaite R. A. (2009) The economy of renaissance Florence. The John Hopkins University Press, BaltimoreGoogle Scholar
  25. Heeffer A. (2008) Text production reproduction and appropriation within the abbaco tradition: A case study. Sources and Commentaries in Exact Sciences 9: 211–256Google Scholar
  26. Heeffer A. (2009) On the nature and origin of algebraic symbolism. In: Van Kerkhove B. (eds) New perspectives on mathematical practices, essays in philosophy and history of mathematics. World Scientific Publishing, Singapore, pp 1–27CrossRefGoogle Scholar
  27. Heeffer, A. (2010a). Algebraic partitioning problems from Luca Pacioli’s Perugia manuscript (Vat. Lat. 3129). Sources and Commentaries in Exact Sciences, 11, (to appear).Google Scholar
  28. Heeffer, A. (2010b). The body in renaissance arithmetic. In: A. Pease, M. Guhe & A. Smaill (Eds.), Mathematical practice and cognition, proceedings of the international symposium on mathematical practice and cognition (pp. 21–22). AISB 2010 convention, 29 March–1 April 2010, De Montfort University, Leicester.Google Scholar
  29. Heeffer, A. (2010c). The symbolic model for algebra: Functions and mechanisms. In L. Magnani, W. Carnielli, & C. Pizzi (Eds.), Model-based reasoning in science and technology, abduction, logic, and computational discovery, studies in computational intelligence (Vol. 314, pp. 519–532). Heidelberg: Springer.Google Scholar
  30. Heeffer, A. (2011). On the curious historical coincidence of algebra and double-entry bookkeeping. In K. François, B. Löwe, T. Müller, & B. van Kerkhove (Eds.), Foundations of the formal sciences. Bringing together philosophy and sociology of science (pp. 111–132). London: College Publications.Google Scholar
  31. Høyrup J. (1994) In measure, number, and weight, studies in the mathematics and culture. State University of New York Press, AlbanyGoogle Scholar
  32. Høyrup J. (2004) Leonardo Fibonacci and abbaco culture a proposal to invert the roles. Revue d’Histoire des Mathématiques 11: 23–56Google Scholar
  33. Høyrup, J. (2007). Jacopo da Firenze’s Tractatus Algorismi and Early Italian Abbacus Culture. (Science Networks. Historical Studies, 34). Birkhäuser, Basel.Google Scholar
  34. Høyrup, J. (2009). How to transfer the conceptual structure of old Babylonian mathematics: Solutions and inherent problems. With an Italian Parallel. Beitrag zur Tagung Zur Übersetzbarkeit von Wissenschaftssprachen des Altertums Johannes Gutenberg-Universität Mainz, 27–29 Juli 2009.Google Scholar
  35. Høyrup J. (2010) Hesitating progress—The slow development toward algebraic symbolization in abbacus and related manuscripts, c. 1300 to c. 1550. In: Heeffer A., Van Dyck M. (eds) Philosophical aspects of symbolic reasoning in early-modern mathematics. Studies in Logic 26, College Publications, London, pp 3–56Google Scholar
  36. Levy, M. (Ed.). (1965). Kūshyār ibn Labbān, Principles of hindu reckoning, (M. Levy, & M. Petruck, Trans.). Madison: University of Wisconsin Press.Google Scholar
  37. Mancosu, P. (eds) (2008) The philosophy of mathematical practice. Oxford University Press, OxfordGoogle Scholar
  38. Nesselmann, G. H. F. (1842). Versuch einer kritischen Geschichte der Algebra (Vol. 1). Die Algebra der Griechen. Berlin (Reprinted Frankfurt, 1969).Google Scholar
  39. Rappe S. (2000) Reading neoplatonism: Non-discursive thinking in the texts of Plotinus, Proclus, and Damascius. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Rouse Ball, W. W. (1960). A short account of the history of mathematics. New York: Dover Books.Google Scholar
  41. Sesiano J. (1985) The appearance of negative solutions in mediaeval mathematics. Archive for History of Exact Sciences 32(2): 105–150CrossRefGoogle Scholar
  42. Sigler, L. (2002). (Ed.) Fibonacci’s Liber Abaci. A translation into modern english of Leonardo Pisano’s book of calculation. Heidelberg: Springer.Google Scholar
  43. Ulivi, E. (2002a). Scuole e maestri d’abaco. In E. Giusti (Ed.), Un ponte sul mediterraneo: Leonardo Pisano, la scienza araba e la rinascita della matematica in Occidente (pp. 121–159). Firenze: Edizioni Polistampa.Google Scholar
  44. Ulivi, E. (2002b). Benedetto da Firenze (1429–1479) un maestro dabaco del XV secolo. Con documenti inediti e con un Appendice su abacisti e scuole dabaco a Firenze nei secoli XIII-XVI”. Bollettino di storia delle scienze matematiche, 22(1) (2002) (full issue).Google Scholar
  45. Ulivi, Elisabetta (2006). Raffaello Canacci, Piermaria Bonini e gli abacisti della famiglia Grassini. Bollettino di storia delle scienze matematiche, 24(2) (2004) (stampa 2006), 125–212.Google Scholar
  46. Van Egmond, W. (1977). New light on Paolo dell’Abbaco. Annali dell’Istituto e Museo di Storia della Scienza di Firenze 2(2), 3–21.Google Scholar
  47. Van Egmond, W. (1980). Practical mathematics in the Italian renaissance: A catalog of Italian abacus manuscripts and printed books to 1600. Monografia, 4, Istituto e Museo di Storia della Scienza, Florence.Google Scholar
  48. Van Kerkhove, B., & Van Bendegem, J. P. (2007). Perspectives on mathematical practices: Bringing together philosophy of mathematics, sociology of mathematics, and mathematics education. Logic, Epistemology, and the Unity of Science (Vol. 5). Dordrecht: Springer.Google Scholar
  49. Vogel, K. (1977). Ein italienisches Rechenbuch aus dem 14. Jahrhundert (Columbia X 511 A13). (Veroffentlichungen des Deutschen Museums fur die Geschichte der Wissenschaften und der Technik. Reihe C, Quellentexte und Ubersetzungen, Nr. 33). Munchen.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Centre for Logic and Philosophy of ScienceGhent UniversityGhentBelgium

Personalised recommendations