Foundations of Science

, Volume 15, Issue 4, pp 303–344 | Cite as

Major Challenges for the Modern Chemistry in Particular and Science in General



In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests.


Philosophy of Chemistry Pragmatism Reductionism Sustainability Systems science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler S. L., Bassi A. (2009) Is quantum theory exact? Science 235: 275CrossRefGoogle Scholar
  2. Ahmad G., Dickerson M. B., Church B. C., Cai Y., Jones S. E., Naik R. R., King J. S., Summers C.J., Kröger N., Sandhage K. H. (2006) Rapid, room-temperature formation of crystalline calcium molybdate phosphor microparticles via peptide-induced precipitation. Advanced Materials 18: 1759–1763CrossRefGoogle Scholar
  3. Anthes, E. (2008). The Re-Envisionaries. Seed 76–84 (July/August 2008)Google Scholar
  4. Ashby R.W. (1956) An introduction to cybernetics. Chapman & Hall, LondonGoogle Scholar
  5. Ball P. (2006a) Chemistry and power in recent American fiction. HYLE—International Journal for Philosophy of Chemistry 12(1): 45–66Google Scholar
  6. Ball, P. (2006b). Chancing upon chemical wonders. Chemistry World 32 (June 2006).Google Scholar
  7. Ball, P. (2006) Does Hot water freeze first? Physics World 19 (April 2006)Google Scholar
  8. Ball P. (2008) Water as an active constituent in cell biology. Chemical Reviews 108(1): 74–108CrossRefGoogle Scholar
  9. Barnard A. S. (2009) Computational strategies for predicting the potential risks associated with nanotechnology. Nanoscale 1: 89–95CrossRefGoogle Scholar
  10. Barth A., Zscherp C. (2002) What vibrations tell us about proteins. Quarterly Review of Biophysics 35(4): 369–430CrossRefGoogle Scholar
  11. Bartlett J. D., Simmer J. P. (1999) Proteinases in developing dental enamel. Critical Reviews in Oral Biology and Medicine 10(4): 425–441CrossRefGoogle Scholar
  12. Bateson G. (1972) Steps to an ecology of mind. University of Chicago Press, Chicago, ILGoogle Scholar
  13. Bateson, G. (1978). Allegory. CoEvolution Quarterly 44–46 (Spring 1978).Google Scholar
  14. Bateson G. (1979a) Mind and nature: A necessary unity. Hampton Press, Cresskill, NJGoogle Scholar
  15. Bateson G. (1979b) Time is out of joint. Memorandum for the board of regents of the University of California. In: Bateson G. (eds) Mind and nature a necessary unity. Hampton Press, Cresskill, NJGoogle Scholar
  16. Billinge S. L., Levin I. (2007) The problem with determining atomic structure at the nanoscale. Science 316: 561–565CrossRefGoogle Scholar
  17. Binnig G., Quate C. F., Gerber Ch. (1986) Atomic force microscope. Physical Review Letters 56: 930–933CrossRefGoogle Scholar
  18. Bizzarri A. R., Cannistraro S. (2002) Molecular dynamics in water at the protein-solvent interface. Journal of Physical Chemistry B 106(26): 6617–6633CrossRefGoogle Scholar
  19. Blackmore, J. T., Itagaki, R., Tanaka, S. (Eds.) (2009). Ernst Mach’s Philosophy (Pro and Con). Sentinel Open Press, Orlando, FL.Google Scholar
  20. Blume A., Zemb Th. (2002) Self-assembly: Weak molecular forces at work for building mesoscopic architectures. Current Opinion in Colloid and Interface Science 7: 66–68CrossRefGoogle Scholar
  21. Bochicchio B., Tamburro A. M. (2002) Polyproline II structure in proteins: Identification by chiroptical spectroscopies, stability, and functions. Chirality 14: 782–792CrossRefGoogle Scholar
  22. Bohm D. (1980) Wholeness and the implicate order. Ark Paperbacks, LondonGoogle Scholar
  23. Bowker M. (2009) A prospective: Surface science and catalysis at the nano scale. Surface Science 603: 2359–2362CrossRefGoogle Scholar
  24. Brewster D. (1885) Memoirs of the life, writings, and discoveries of Sir Isaac Newton. Adamant, Boston, MAGoogle Scholar
  25. Bröcker M. (2003) Between the lines: The part-of-the-world position of heinz von foerster. Cybernetics and Human Knowing 10(2): 51–65Google Scholar
  26. Capra F. (2002) Complexity and life. Emergence 4(1/2): 15–33CrossRefGoogle Scholar
  27. Capra F. (2007) The science of Leonardo: Inside the mind of the great genius of the renaissance. Doubleday, New York, NYGoogle Scholar
  28. Capra F. (1976) The tao of physics. Opus, BelgradeGoogle Scholar
  29. Cheney M. (2001) Tesla: Man out of time. Simon and Schuster, London, pp 43–44Google Scholar
  30. Cohen A. J., Mori-Sanchez P., Yang W. (2008) Insights into current limitations of density functional theory. Science 321(5890): 792–794CrossRefGoogle Scholar
  31. Cooper, A. (1999) Thermodynamics of protein folding and stability. In Protein: A comprehensive treatise Vol. 2, pp. 217–270, edited by Geoffrey Allen, JAI Press, Stamford, CN.Google Scholar
  32. Crocker J. C. (1998) Interactions and Dynamics in Charge-Stabilized Colloid. MRS Bulletin 23: 24–31Google Scholar
  33. Crupi V., Interdonato S., Longo F., Majolino D., Migliardo P., Venuti V. (2007) A new insight in the hydrogen bonding structures of nanoconfined water: A Raman study. Journal of Raman Spectroscopy 39(2): 244–249CrossRefGoogle Scholar
  34. Dahiyat B. I., Mayo S. L. (1997) De Novo protein design: Fully automated sequence selection. Science 278(5335): 82–87CrossRefGoogle Scholar
  35. de Saint-Exupery A. (1946) The little prince. Mladost, ZagrebGoogle Scholar
  36. Denny M. W. (2008) The intrigue of the interface. Science 320(5878): 886CrossRefGoogle Scholar
  37. Derjaguin B. V., Landau L. (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochimica (URSS) 14(6): 633–662Google Scholar
  38. Dimiduk D. M., Woodward C., LeSar R., Uchic M. D. (2006) Scale-free intermittent flow in crystal plasticity. Science 312(5777): 1188–1190CrossRefGoogle Scholar
  39. Dirac P. (1963) The evolution of physicist’s picture of nature. Scientific American, 208(5).Google Scholar
  40. Dostoyevsky F. M. (2003) The idiot. Vintage, London, UKGoogle Scholar
  41. Earley J. E. Sr. (2003) Varieties of properties: An alternative distinction among qualities. Annals of the New York Academy of Sciences 988: 80–89CrossRefGoogle Scholar
  42. Einstein A. in a letter to R. A. Thornton (December 7, 1944); retrieved from
  43. Fadini A., Schnepel F.-M. (1989) Vibrational spectroscopy: Methods and applications. John Wiley & Sons, New York, NYGoogle Scholar
  44. Feynman R. P. (1998) The meaning of It all: Thoughts of a citizen scientist. Helix Books/Addison-Wesley, Reading, MAGoogle Scholar
  45. Field, R., Györgyi, L. (eds) (1993) Chaos in chemistry and biochemistry. World Scientific, SingaporeGoogle Scholar
  46. Fromm E. (1956) The art of loving. Naprijed, ZagrebGoogle Scholar
  47. Future of Chemistry (2009). Nature Chemistry 1, 5–15Google Scholar
  48. Gardner G., Sampat P. (1998) Mind over matter: Recasting the role of materials in our lives. Worldwatch Paper 144, WorldWatch Institute, W. W. Norton and Co, New York.Google Scholar
  49. Gärtner W. (2009) Enzyme catalysis reilluminated. Angewandte Chemie International Edition 48: 2–4CrossRefGoogle Scholar
  50. Gleick J. (1987) Chaos: Making a new science. Heinemann, London, UKGoogle Scholar
  51. Greenberg A. (2009) Integrating Nanoscience into the classroom: Perspectives on nanoscience education projects. ACS Nano 3(4): 762–769CrossRefGoogle Scholar
  52. Gribbin J. (2004) Deep simplicity: Chaos, complexity and the emergence of life. Penguin, LondonGoogle Scholar
  53. Grier D. G. (2000) When like-charges attract: Interactions and dynamics in charge-stabilized colloidal suspensions. Journal of Physics: Condensed Matter 12: A85–A94CrossRefGoogle Scholar
  54. Gun’ko V. M., Turov V. V., Bogatyrev V. M., Zarko V. I., Leboda R., Goncharuk E. V., Novza A. A., Turov A. V., Chuiko A. A. (2005) Unusual properties of water at hydrophilic/hydrophobic interfaces. Advances in Colloid and Interface Science 118: 125–172Google Scholar
  55. Harre R. (2003) Structural explanation in chemistry and its evolving forms. Annals of the New York Academy of Sciences 988: 1–15CrossRefGoogle Scholar
  56. Harrison A. G., Treagust D. F. (2005) Teaching and learning with analogies: Friend or foe? In: Aubusson P. J., Harrison A. G., Ritchie S. M. (eds) Metaphor and analogy in science education. Springer, DordrechtGoogle Scholar
  57. Hartsthorne C. (1980) Science as the search for the hidden beauty of the world. In: Curtin D. W. (eds) The aesthetic dimension of science. Philosophical Library, New York, NYGoogle Scholar
  58. He Y. P., Wang S. Q., Li C. R., Miao Y. M., Wu Z. Y., Zou B.S. (2005) Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. Journal of Physics D 38: 1342–1350CrossRefGoogle Scholar
  59. Heisenberg W. (1959) Physics and philosophy. George Allen and Unwin Edition, LondonGoogle Scholar
  60. Heisenberg W. (1979) Philosophical problems of quantum physics. Ox Bow Press, Woodbridge, CTGoogle Scholar
  61. Hollingsworth R.J. (2007) High cognitive complexity and the making of major scientific discoveries. In: Sales A., Fournier M. (eds) Knowledge, communication, and creativity. Sage, London, UK, pp 129–155Google Scholar
  62. James W. (1907) Pragmatism: A new name for some old ways of thinking. Longman Green and Co, New YorkCrossRefGoogle Scholar
  63. Jenck J. F., Agterberg F., Droescher M. J. (2004) Products and processes for a sustainable chemical industry: A review of achievements and prospects. Green Chemistry 6: 544–556CrossRefGoogle Scholar
  64. Johnson M. A. (2009) Experiment and theory in harmony. Nature Chemistry 1: 8–9CrossRefGoogle Scholar
  65. Kaku M. (2004) Einstein’s cosmos: How lbert Einstein’s vision transformed our understanding of space and time. W. W. Norton & Co, New York, NYGoogle Scholar
  66. Kelly K. (1994) Out of control: The new biology of machines, social systems and the economic world. Perseus Books, Reading, MAGoogle Scholar
  67. Kitcher P. (1998) A plea for science studies. In: Koertge N. (eds) A House built on sand: Exposing postmodernist myths about science. Oxford University Press, Oxford, UKGoogle Scholar
  68. Kondepudi D. K., Prigogine I. (1998) Modern thermodynamics: From heat engines to dissipative structures. John Wiley & Sons, New York, NYGoogle Scholar
  69. Kordeš U. (2004) From truth to trust. Studia Humanitatis, LjubljanaGoogle Scholar
  70. Kortemme T., Baker D. (2004) Computational design of protein–protein interactions. Current Opinion in Chemical Biology 8(1): 91–97CrossRefGoogle Scholar
  71. Kuhn T. (1969) The structure of scientific revolutions. Nolit, BelgradeGoogle Scholar
  72. Laszlo E. (1996) The systems view of the world: A holistic vision for our time. Hampton Press, Cresskill, NJGoogle Scholar
  73. Lindoy L. F., Atkinson I. M. (2000) Self-assembly in supramolecular systems. Royal Society of Chemistry, CambridgeGoogle Scholar
  74. Lipscomb W. N. (1980) Aesthetic aspects of acience. In: Curtin D. W. (eds) The aesthetic dimension of science. Philosophical Library, New York, NYGoogle Scholar
  75. Lovelock J. (2000) Gaia: A new look at life on earth. Oxford University Press, Oxford, UKGoogle Scholar
  76. Lovelock J. (2005) Gaia: Medicine for an ailing planet. Gaia Books, LondonGoogle Scholar
  77. Lübbe A. S., Bergemann C., Brock J., McClure D. G. (1999) Physiological aspects in magnetic drug-targeting. Journal of Magnetism and Magnetic Materials 194: 149–155CrossRefGoogle Scholar
  78. Malescio G. (2003) Intermolecular potentials—Past, present, future. Nature Materials 2: 501–503CrossRefGoogle Scholar
  79. Marcus R. A. (2009) Interaction between experiments, analytical theories, and computation. Journal of Physical Chemistry C 113: 14598–14608CrossRefGoogle Scholar
  80. Martí S., Roca M., Andrés J., Moliner V., Silla E., Tuñón I., Bertrán J. (2004) Theoretical Insights in Enzyme Catalysis. Chemical Society Review 33: 98–107CrossRefGoogle Scholar
  81. Martí S., Andrés J., Moliner V., Silla E., Tuñón I., Bertrán J. (2008) Computational design of biological catalysts. Chemical Society Reviews 371: 2634–2843CrossRefGoogle Scholar
  82. Matthiesen J., Wendt S., Hansen J. Ø., Madsen G. K. H., Lira E., Galliker P., Vestergaard E. K., Schaub R., Lægsgaard E., Hammer B., Besenbacher F. (2009) Observation of all the intermediate steps of a chemical reaction on an oxide surface by scanning tunneling microscopy. ACS Nano 3: 517CrossRefGoogle Scholar
  83. Mattingly J. (2003) Gauge theory and chemical structure. Annals of the New York Academy of Sciences 988: 193–202CrossRefGoogle Scholar
  84. Maturana H. R., Poerksen B. (2004) Varieties of objectivity. Cybernetics and Human Knowing 11(4): 63–71Google Scholar
  85. Maturana H., Varela F. (1987) The tree of knowledge: The biological roots of human understanding. Shambhala, Boston, MAGoogle Scholar
  86. Medawar P. (1963). Is the scientific paper a fraud? The Listener377–378 (September 12, 1963).Google Scholar
  87. Medd W. (2001) What is complexity science? Toward an ’ecology of ignorance’. Emergence 3(1): 43–60CrossRefGoogle Scholar
  88. Meier S., Jensen P. R., David C. N., Chapman J., Holstein T. W., Grzesiak S., Özbek S. (2007) Continuous Molecular evolution of protein domain structures by single amino acid changes. Current Biology 17: 173–178CrossRefGoogle Scholar
  89. Minor D. L. Jr., Kim P. S. (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature 380: 730–734CrossRefGoogle Scholar
  90. Miranker A. D. (2005) Fibres hinge on swapped domains. Nature 437(8): 197–198CrossRefGoogle Scholar
  91. Muller D. A. (2009) Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Materials 8: 263–267CrossRefGoogle Scholar
  92. Nørskov J. K., Bligaard T., Rossmeisl J., Christensen C. H. (2009) Towards the computational design of solid catalysts. Nature Chemistry 1: 37–46CrossRefGoogle Scholar
  93. Ostwald C. W. W. (2009) An Introduction to theoretical and applied colloid chemistry. BiblioBazaar, LLCGoogle Scholar
  94. Paine M. L., White S. N., Luo W., Fong H., Sarikaya M., Snead M. L. (2001) Regulated gene expression dictates enamel structure and tooth function. Matrix Biology 20: 273–292CrossRefGoogle Scholar
  95. Pankhurst Q. A., Connolly J., Jones S. K., Dobson J. (2003) Applications of Magnetic Nanoparticles in Biomedicine. Journal of Physics D 36: R167–R181CrossRefGoogle Scholar
  96. Penrose R. (1989) The emperor’s new mind: Concerning computers, minds, and the laws of physics. Oxford University Press, Oxford, UKGoogle Scholar
  97. Peschl M. F. (2001) Constructivism, cognition, and science—An investigation of its links and possible shortcomings. Foundations of Science 6(1-3): 125–161CrossRefGoogle Scholar
  98. Peyrard M. (2004) Nonlinear dynamics and statistical physics of DNA. Nonlinearity 17: R1–R40CrossRefGoogle Scholar
  99. Phelan S. E. (2001) What is complexity science, really?  Emergence 3(1): 120–136CrossRefGoogle Scholar
  100. Pochapsky T. C., Pochapsky S.S. (2007) NMR for physical and biological scientists. Taylor & Francis, New York, NYGoogle Scholar
  101. Poerksen B. (2003) At each and every moment, I can decide who I am: Heinz von Foerster on the Observer, dialogic life, and a constructivist philosophy of distinctions. Cybernetics & Human Knowing 10(3-4): 9–26Google Scholar
  102. Polanyi M. (1936) The value of the inexact. Philosophy of Science 13: 233–234CrossRefGoogle Scholar
  103. Prigogine I. (1997) The end of certainty. Free Press, Columbus, OHGoogle Scholar
  104. Rajagopalan R. (2001) Simulations of self-assembling systems. Current Opinion in Colloid and Interface Science 6: 357–365CrossRefGoogle Scholar
  105. Raković D. (2009) Integrative biophysics, quantum medicine and quantum-holographic informatics: Psychosomatic-cognitive implications. IASC & IEFPG, BelgradeGoogle Scholar
  106. Rasmusen E. (2006) Games and information. Wiley, New York, NYGoogle Scholar
  107. Re G. D. (2003) Reaction mechanisms and chemical explanation. Annals of the New York Academy of Sciences 988: 133–140CrossRefGoogle Scholar
  108. Richardson K., Cilliers P. (2001) What is complexity science? A view from different directions. Emergence 3(1): 5–23CrossRefGoogle Scholar
  109. Richman E. K., Hutchison J. E. (2009) The nanomaterial characterization bottleneck. ACS Nano 3: 2441–2446CrossRefGoogle Scholar
  110. Riddick T. M. (1968) Control of colloid stability through zeta potential. Livingston Publishing, WynnewoodGoogle Scholar
  111. Roberts R. M. (1989) Serendipity: Accidental discoveries on science. Wiley, New York, NYGoogle Scholar
  112. Romesin H. M. (2002) Autopoiesis, structural coupling and cognition: A history of these and other notions in the biology of cognition. Cybernetics and Human Knowing 9(3-4): 5–34Google Scholar
  113. Rosen, B. (2008) Spin me to the moon; retrieved from
  114. Royal Society and Royal Academy of Engineering (2004). Nanoscience and Nanotechnologies: Opportunities and Uncertainties. London, UK; retrieved from
  115. Rueda M., Cubero E., Laughton C. A., Orozco M. (2004) Exploring the counterion atmosphere around dna: What can be learned from molecular dynamics simulations? Biophysical Journal 87(2): 800–811CrossRefGoogle Scholar
  116. Shaw D.J. (1992) Introduction to colloid and surface chemistry. Butterworth Heinemann, Oxford, UKGoogle Scholar
  117. Thoreau H. D. (1994) Walking. HarperCollins, New YorkGoogle Scholar
  118. Thyssen Ole (2003) TRUTH IS WAR: Conversations with Heinz von Foerster. Cybernetics and Human Knowing 10(3-4): 179–181Google Scholar
  119. Tirrell, M. V., & Katz, A. (Eds) (2005) Self-assembly in materials synthesis. MRS Bulletin 30.Google Scholar
  120. Tuxill J. (1998) Losing strands in the web of life: Vertebrate declines and the conservation of biological diversity. Worldwatch Paper 141, WorldWatch Institute, New York: W. W. Norton and Co.Google Scholar
  121. Ulanowicz Robert E. (2004) On the nature of ecodynamics. Ecological Complexity 1: 341–354CrossRefGoogle Scholar
  122. Urban K. W. (2009) Is science prepared for atomic-resolution electron microscopy? Nature Materials 8: 260–262CrossRefGoogle Scholar
  123. Uskoković V. (2007a) Theoretical and practical aspects of colloid science and self-assembly phenomena revisited. Reviews in Chemical Engineering 23(5): 301–372Google Scholar
  124. Uskoković V. (2007b) Questions and challenges for the upcoming trends in practical colloid science. In: Scarpetti Emelio A. (eds) Progress in colloid and surface science research. Nova Science Publishers, Hauppauge, NYGoogle Scholar
  125. Uskoković V. (2007c) Nanotechnologies: What we do not know. Technology in Society 29(1): 43–61CrossRefGoogle Scholar
  126. Uskoković V. (2008a) Insights into morphological nature of precipitation of cholesterol. Steriods 73: 356–369CrossRefGoogle Scholar
  127. Uskoković V. (2008b) Surface charge effects involved in the control of stability of sols comprising uniform cholesterol particles. Materials and Manufacturing Processes 23(6): 620–623CrossRefGoogle Scholar
  128. Uskoković V (2008c) Of sustainability, elephants and prefab sprouts. International Journal of Sustainable Society 1(1): 85–102CrossRefGoogle Scholar
  129. Uskoković V. (2008d) Nanomaterials and nanotechnologies: Approaching the crest of this big wave. Current Nanoscience 4: 119–129CrossRefGoogle Scholar
  130. Uskoković V. (2008e) Isn’t self-assembly a misnomer? multi-disciplinary arguments in favor of co-assembly. Advances in Colloid and Interface Science 141(1-2): 37–47CrossRefGoogle Scholar
  131. Uskoković V. (2009a) Trends in Practical colloid science. Nova Science Publishers, Hauppauge, NYGoogle Scholar
  132. Uskoković V. (2009b) On science of metaphors and the nature of systemic reasoning. World Futures: Journal of General Evolution 65: 241–269CrossRefGoogle Scholar
  133. Uskoković V. (2009c) On the relational character of mind and nature. Res Cogitans: Journal of Philosophy 6(1): 286–400Google Scholar
  134. Uskoković V. (2009d) A collection of micrographs: Where science and art meet. Technoetic Arts: A Journal of Speculative Research(in press).Google Scholar
  135. Uskoković V. (2009e) On the light doves and learning on mistakes. Axiomathes: An International Journal in Ontology and Cognitive Systems 19: 17–50Google Scholar
  136. Uskoković V. (2010a) The metaphorical model: The bridge between science and religion. Journal for Interdisciplinary Research on Religion and Science 6: 11–34Google Scholar
  137. Uskoković V. (2010) A collection of micrographs: Where science and art meet. Technoetic Arts: A Journal of Speculative Research 7(3): 231–248CrossRefGoogle Scholar
  138. Uskoković V., Drofenik M. (2005) Synthesis of materials within reverse micelles. Surface Review and Letters 12(2): 239–277CrossRefGoogle Scholar
  139. Uskoković V., Matijević E. (2007) Uniform particles of pure and silica coated cholesterol. Journal of Colloid and Interface Science 315(2): 500–511CrossRefGoogle Scholar
  140. Uskoković V., Košak A., Drofenik M. (2006) Preparation of silica-coated lanthanum-strontium manganite particles with designable curie point, for application in hyperthermia treatments. International Journal of Applied Ceramic Technology 3(2): 134–143CrossRefGoogle Scholar
  141. van Embden J., Sader J. E., Davidson M., Mulvaney P. (2009) Evolution of colloidal nanocrystals: Theory and modeling of their nucleation and growth. Journal of Physical Chemistry C 113: 16342–16355CrossRefGoogle Scholar
  142. van Gunsteren W. F., Bakowies D., Baron R., Chandrasekhar I., Christen M., Daura X., Gee P., Geerke D. P., Glattli A., Hunenberger P. H., Kastenholz M. A., Oostenbrink C., Schenk M., Trzesniak D., van der Vegt N. F. A., Yu H. B. (2006) Biomolecular modeling: Goals, problems, perspectives. Angewandte Chemie International Edition English 45: 4064–4092CrossRefGoogle Scholar
  143. van Gunsteren W. F., Dolenc J., Mark A. E. (2008) Molecular simulation as an aid to experimentalists. Current Opinion in Structural Biology 18: 149–153Google Scholar
  144. Verwey, E. J. W., Overbeek, J. T. G., Van Ness, K. (eds) (1948) Theory of the stability of lyophobic colloids—The interactions of soil particles having an electrical double layer. Elsevier, AmsterdamGoogle Scholar
  145. Vlieg E., Deij M., Kaminski D., Meekes H., van Enckevort W. (2007) Towards an atomic-Scale understanding of crystal growth in solution. Faraday Discussions 136: 57–69 discussion 107–123CrossRefGoogle Scholar
  146. Vogler E. A. (1998) Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 74: 69–117CrossRefGoogle Scholar
  147. von Bertalanffy L. (1968) General system theory: Foundations, development, applications. George Braziller, New York, NYGoogle Scholar
  148. von Foerster H., Poerksen B. (2002) The metaphysics of ethics: A conversation. Cybernetics and Human Knowing 9(3-4): 149–157Google Scholar
  149. von Glasersfeld E. (1995) Radical constructivism: A way of knowing and learning. RoutledgeFalmer, London, UKCrossRefGoogle Scholar
  150. Wang L., Sondi I., Matijević E. (1999) Preparation of uniform needle-like aragonite particles by homogeneous precipitation. Journal of Colloid and Interface Science 218: 545–553CrossRefGoogle Scholar
  151. Waters C. (1999) Invitation to dance—A conversation with Heinz von Foerster. Cybernetics and Human Knowing 6(4): 81–84Google Scholar
  152. Whitehead A. N. (1925) Science and the modern world. Mentor, New York, NYGoogle Scholar
  153. Whitehead A. N. (1928) Process and reality. Free Press, Columbus, OHGoogle Scholar
  154. Whitesides G. M. (2007) Revolutions in Chemistry. Chemical & Engineering News 12–17 (March 26, 2007).Google Scholar
  155. Whitesides G., Grzybowski B. (2002) Self-assembly at all scales. Science 295: 2418–2421CrossRefGoogle Scholar
  156. Wilde P. J. (2000) Interfaces: Their role in foam and emulsion behaviour. Current Opinion in Colloid and Interface Science 5: 176–181CrossRefGoogle Scholar
  157. Winograd T., Flores F. (1987) Understanding computers and cognition: A new foundations for design. Ablex Publishing Corporation, Norwood, NJGoogle Scholar
  158. Wittgenstein L. (1918) Tractatus logico-philosophicus. Routledge, LondonGoogle Scholar
  159. Wolfram S. (2004) A new kind of science. Wolfram Media, Champaign, ILGoogle Scholar
  160. Yang C. N. (1980) Beauty and theoretical physics. In: Curtin D. W. (eds) The aesthetic dimension of science. Philosophical Library, New York, NYGoogle Scholar
  161. Yeates T. O. (2007) Protein structures: Evolutionary bridges to new folds. Current Biology 17(2): R48–R50CrossRefGoogle Scholar
  162. Zukav G. (1979) The Dancing Wu Li Masters: An overview of the new physics. Random House, London, UKGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Division of Biomaterials and BioengineeringUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations