Foundations of Science

, Volume 15, Issue 2, pp 177–197 | Cite as

Anthropomorphic Quantum Darwinism as an Explanation for Classicality

  • Thomas Durt


According to Zurek, the emergence of a classical world from a quantum substrate could result from a long selection process that privileges the classical bases according to a principle of optimal information. We investigate the consequences of this principle in a simple case, when the system and the environment are two interacting scalar particles supposedly in a pure state. We show that then the classical regime corresponds to a situation for which the entanglement between the particles (the system and the environment) disappears. We describe in which circumstances this factorisability condition is fulfilled, in the case that the particles interact via position-dependent potentials, and also describe in appendix the tools necessary for understanding our results (entanglement, Bell inequalities and so on).


Quantum Darwinism Environment induced superselection Entanglement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell J. S. (1965) On the EPR paradox. Physics 1: 195–200Google Scholar
  2. Bell J. S. (1987) Speakable and unspeakable in quantum mechanics. University Press, CambridgeGoogle Scholar
  3. Braun, D. (2005). Entanglement from thermal black body radiation (pp. 1–10), quant-ph/0505082.Google Scholar
  4. Braunstein S. L., Mann A., Revzen M. (1992) Maximal violation of Bell inequalities for mixed states. Physics Review Letters 68: 3259–3261CrossRefGoogle Scholar
  5. Broadbent, A., & Methot, A. A. (2005). Entanglement swapping, light cones and elements of reality (pp. 1–9), quant-ph/0511047.Google Scholar
  6. Bruss D. (2002) Characterizing entanglement. Journal of Mathematics and Physics 43(9): 4237–4251CrossRefGoogle Scholar
  7. Ciron M. A., Dahl J. P., Fedorov M., Greenberger D., Schleich W. P. (2002) Huygen’s principle, the free Schrödinger particle and the quantum anti-centrifugal force. Journal of Physics B: Atomic, Molecular, and Optical Physics 35: 191–203CrossRefGoogle Scholar
  8. Dürr, D., Goldstein, S., Tumulka, R., & Zanghi, N. (2005). To appear in the encyclopedia of philosophy, 2nd edn [edited by D. M. Borchert (Macmillan Reference, (].
  9. Durt, T. (2000). Localization of quantum systems and special relativity. In Proceedings of the conference, physical interpretations of relativity theory (p. 89). London, September 2000.Google Scholar
  10. Durt, T. (2001). Characterization of an entanglement-free evolution (PP. 1–21). quant-ph/0109112.Google Scholar
  11. Durt, T. (2004a). Quoted in the New Scientist, March 2004, in the paper “Quantum Entanglement, How the Future can influence the past”, by Michael Brooks, about entanglement and interaction in Quantum Mechanics.Google Scholar
  12. Durt T. (2004) Quantum entanglement, interaction, and the classical limit. Zeit fur Naturf 59A: 425–436Google Scholar
  13. Durt, T. (2006). Quantum information, entanglement and relationships. Cosmos, 2(1), 21–48 (World Scientific Singapore).Google Scholar
  14. Durt T. (2007) Quantum information, a survey. Physicalia Magazine 29(4): 145–160Google Scholar
  15. Ehrenfest, P. (1917). In what way does it become manifest in the fundamental laws of physics that space has three dimensions. In Proceedings of Amsterdam academy, Vol. 20, (p. 200–209).Google Scholar
  16. Ehrenfest P. (1920) Welche Rolle spielt die Dreidimensionalitat des Raumes in den Grundgesetzen der Physik?. Annual Physics New York 61: 440–449CrossRefGoogle Scholar
  17. Einstein A., Podolsky B., Rosen N. (1935) Can quantum mechanical description of physical reality be considered complete?. Physics Review 47: 777–780CrossRefGoogle Scholar
  18. Engel G. S., Calhoun Tessa R., Read E. L., Ahn T.-K., Manal T., Cheng Y.-C., Blankenship R. E., Fleming Graham R. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446: 782–786CrossRefGoogle Scholar
  19. Faris, W. (1996). Notices of the AMs, November , 1339 (
  20. Gemmer J., Mahler G. (2001) Entanglement and the factorization approximation. European Physics Journal D 17: 385–393CrossRefGoogle Scholar
  21. Gisin N. (1991) Bell’s inequality holds for all non-product states. Physics Letter A 154(5,6): 201CrossRefGoogle Scholar
  22. Home D., Selleri F. (1991) Bell’s theorem and the EPR paradox. La Rivista del Nuovo Cimento della Societa Italiana di fisica 14(9): 1–95CrossRefGoogle Scholar
  23. Jaeger G., Shimony A., Vaidman L. (1995) Two interferometric complementarities. Physics Review A 51: 54–67CrossRefGoogle Scholar
  24. Janssen, H. (2008). Reconstructing Reality Environment-induced decoherence, the measurement problem, and the emergence of definiteness in quantum mechanics. Master Thesis, Univ. Nijmegen, A critical assessment
  25. Kaslikowski D., Kwek L. C., Englert B.-G., Zukowski M. (2003) Information theoretic approach to single-particle and two-particle interference in multi-path interferometers. Physics Review Letters 91: 037901 (4 pages)Google Scholar
  26. Masanes, L., Acin, A., & Gisin, N. (2005). General properties of nonsignaling theories (pp. 1–10), quant-ph/0508016.Google Scholar
  27. Masanes, L., Acin, A., & Gisin, N. (2010). From Bell’s theorem to secure quantum key distribution (pp. 1–5), quant-ph/0510094.Google Scholar
  28. Nielsen M. A., Chuang I. L. (2000) Quantum computing and quantum information. Cambridge University Press, CambridgeGoogle Scholar
  29. Omnès R. (1994) The interpretation of quantum mechanics. Princeton University Press, PrincetonGoogle Scholar
  30. Osterloh A., Amico L., Falci G., Fazio R. (2001) Scaling of the entanglement close to quantum phase transitions. Letters to Nature 416: 608–610CrossRefGoogle Scholar
  31. Paz J. P., Zurek W. H. (1999) Quantum limit of decoherence: Environment induced superselection of energy eigenstates. Physics Review Letters 82: 5181–5185CrossRefGoogle Scholar
  32. Peres A. (2004) What is actually teleported?. IBM Journal of Research and Development 48(1): 63–68CrossRefGoogle Scholar
  33. Quack M. (2002) How important is parity violation for molecular and biomolecular chirality?. Angewandte Chemie 41(24): 4618–4630CrossRefGoogle Scholar
  34. Schrödinger, E. (1935). Discussion of probability relations between separated systems. In Proceedings of Cambridge Philosophy Society, Vol. 31 (p. 555–563). The english translation can also be found in Wheeler and Zurek (1983).Google Scholar
  35. Scully M., Englert B.-G., Walther H. (1991) Quantum optical tests of complementarity. Nature 351: 111–116CrossRefGoogle Scholar
  36. Seevinck M. (2004) Holism, physical theories and quantum mechanics. Studies in History and Philosophy of Modern Physics 35B: 693–712CrossRefGoogle Scholar
  37. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 (623–656),
  38. Squires E. (1994) The mystery of the quantum world (2nd ed.). Taylor and Francis, New YorkGoogle Scholar
  39. Tittel W., Brendel J., Zbinden H., Gisin N. (1998) Quantum cryptography using entangled photons in energy-time bell states. Physics Review Letters 81: 3563–3566CrossRefGoogle Scholar
  40. Tittel, W., Brendel, J., Zbinden, H., & Gisin, N. (2000). Experimental test of relativistic quantum state collapse with moving reference frames (pp. 1–4), quant-ph/0002031.Google Scholar
  41. Wheeler, J.A., Zurek, W.H. (eds) (1983) Quantum theory and measurement. Princeton, NJGoogle Scholar
  42. Wiseman H.M., Eisert J. (2007) Nontrivial quantum effects in biology: A skeptical point of view. In: Abbott D. (eds) Invited contribution to Quantum aspects of life. World Scientific, Singapore, pp 381–402Google Scholar
  43. Zurek, W. H. (1981). Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse Physics Review D, 24, 1516–1525CrossRefGoogle Scholar
  44. Zurek W.H. (1982) Environment-induced superselection rules. Physics Review D 26: 1862–1880CrossRefGoogle Scholar
  45. Zurek W.H. (1991) Decoherence and the transition from quantum to classical. Physics Today 44(10): 36–44CrossRefGoogle Scholar
  46. Zurek W.H. (1993) Preferred states, predictability, classicality, and the environment-induced decoherence. Progress Theory Physics 89(2): 281–312CrossRefGoogle Scholar
  47. Zurek, W. H. (2003). Decoherence and the transition from quantum to classical revisited,

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.TONA Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations