Skip to main content
Log in

Schwinger and the Ontology of Quantum Field Theory

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic methodology extended a strict measurement-based formulation of quantum mechanics through field theory. His extension also excluded the quark hypothesis and the standard model. Quarks and local gauge invariance are postulates that go beyond the limits of an epistemological interpretation of quantum mechanics. The ontological significance ascribed to these advances depends on the role accorded ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Accardi L. (1995). Can mathematics help solving the interpretational problems of quantum mechanics?. Il Nuovo Cimento 110B: 685–721

    Google Scholar 

  • Arntzenius F. (1990). Casual paradoxes in special relativity. The British Journal for the Philosophy of Science, 41: 223–243

    Article  Google Scholar 

  • Atmanspacher, H., & Primas, H. (2002). Epistemic and ontic quantum realities. PhiScArchives, 938.

  • Binétruy P. (2006). Supersymmetry: Theory, experiment and cosmology. Oxford University Press, Oxford

    Google Scholar 

  • Blackburn S. (1993). Essays in Quasi-Realism. Oxford University Press, New York

    Google Scholar 

  • Bohr N. and Rosenfeld L. (1933). On the question of the measurability of electromagnetic field quantities. In: Wheeler, J. and Zurek, W. (eds) Quantum theory and measurement., pp 478–522. Princeton University Press, Princeton

    Google Scholar 

  • Bohr N. (1950). Field and charge measurements in quantum electrodynamics. Physical Review, 78: 794–798

    Article  Google Scholar 

  • Boyd R. (1983). On the current status of the issue of scientific realism. Erkenntnis, 19: 45–90

    Article  Google Scholar 

  • Cao T. (1998). Conceptual developments of 20th century field theories. Cambridge University Press, Cambridge

    Google Scholar 

  • Castellani E. (2002). Reductionism, emergence and effective field theories. Studies in History and Philosophy of Science B, 33: 251–267

    Article  Google Scholar 

  • Clifton, R., & Halvorson, H. (2001). Are rindler quanta real? Inequivalent particle concepts in quantum field theory. philsci-archive, 73.

  • Clifton R., Bub J. and Halvorson H. (1994). Characterizing quantum theory in terms of information–theoretic constraints. Foundations of Physics, 33: 1561–1591

    Article  Google Scholar 

  • Clifton R. (1996). The properties of modal interpretations of quantum mechanics. British Journal for Philosophy of Science, 47: 371–398

    Article  Google Scholar 

  • Darrigol O. (1991). Coherence et complétude de la mécanique quantique: l’example de Bohr. Review d’Histoire de Sciences, 44: 137–179

    Google Scholar 

  • Davidson D. (2001). Subjective, intersubjective, objective. Clarendon Press, Oxford

    Google Scholar 

  • Diecks D. (1988). The formalism of quantum theory: An objective description of reality?. Annalen der Physik 7: 174–190

    Article  Google Scholar 

  • Dieks D. (1989). Quantum Mechanics without the Projection Postulate and its Realistic Interpretation. Foundations of Physics, 19: 1395–1423

    Article  Google Scholar 

  • Dieks D. (1994). Modal interpretation of quantum mechanics, measurements and macroscopic. Physical Review A, 49: 2289–2300

    Article  Google Scholar 

  • Dirac P. (1935). The principles of quantum mechanics, (2nd. ed.). Cambridge University Press, Cambridge

    Google Scholar 

  • Dirac P. (1958). The principles of quantum mechanics, (4th ed.). Clarendon Press, Oxford

    Google Scholar 

  • Dirac, P. (1964). Foundations of quantum theory. Lecture at Yeshiva University.

  • Feynman R. (1974). Structure of the Proton. Science, 183: 601–610

    Article  Google Scholar 

  • Flato, M., Fronsdal, C., & Milton, K. (1979). Selected Papers (1937–1976) of Julian Schwinger. Dordrecht: Holland: D. Reidel Publishing Company.

  • Fourier, J. 1955[1822]. The analytical theory of heat. New York: Dover

  • Fraser, D. (forthcoming). The problem of theory choice for the interpretation of quantum field theory. In C. Bicchieri, & J. M. Alexander (Eds.), Proceedings of the 2006 Philosophy of Science Association Meeting. Philosophy of Science Association.

  • Fuchs, C. (2001). Quantum foundations in the light of quantum information. In A. Gonis, & P. Turchi (Eds.), Decoherence and its implications in quantum computation and information transfer: Proceedings of the NATO Advanced Research Workshop, Mykonos, Greece, June 25–30, 2000, 39–82. Amsterdam: IOS Press.

  • Furth R. (1956). Investigations on the theory of Brownian Motion. Dover, New York

    Google Scholar 

  • Gell-Mann M and Ne’eman Y. (1964). The eightfold way. W. A. Benjamin, New York

    Google Scholar 

  • Glashow S. (1996). The Road to Electroweak Unification. In: Ng, Y. (eds) Julian Schwinger, the physicist, the Teacher and the man., pp. World Scientific, Singapore

    Google Scholar 

  • Gomatam, R. (forthcoming). Bohr’s interpretation and the copenhagen interpretation—Are they mutually exclusive? Philosophy of Science.

  • Gottfried K. (1966). Quantum mechanics. Volume I: Fundamentals. W. A. Benjamin, New York

    Google Scholar 

  • Grinbaum A. (2004). Le rôle de l’information dans la théorie quantique. Dissertation: University of Paris, arXiv:quant-ph/0410071.

  • Haag R. (1992). Local quantum physics: Fields, particles, algebras. Springer-Verlag, Berlin

    Google Scholar 

  • Halvorson H., Clifton R. (2002). No place for particles in relativistic quantum theories. Philosophy of Science 69, 1–28

    Article  Google Scholar 

  • Halvorson, H. & Muger, M. (2006). Algebraic quantum field theory. PhilSciArchives, 2633.

  • Halvorson H. (2004). A note on information theoretic characterization of physical theories. Studies in History and Philosophy of Modern Physics, 35: 277–293

    Article  Google Scholar 

  • Healey R. (1989). The philosophy of quantum mechanics: An interactive interpretation. Cambridge University Press, Cambridge

    Google Scholar 

  • Healey R. (1991). Holism and nonseparability. Journal of Philosophy, 88: 393–421

    Article  Google Scholar 

  • Heisenberg W. (1958). Physics and philosophy: The revolution in modern science. Harper and Brothers, New York

    Google Scholar 

  • Heisenberg W. (1976). The nature of elementary particles. Physics Today, 29: 32–39

    Article  Google Scholar 

  • Higgs P. (1997). Spontaneous breaking of symmetry. In: Hoddeson, L. et al. (eds) The rise of the standard model, pp. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes R. (1989). The structure and interpretation of quantum mechanics. Harvard University Press, Cambridge

    Google Scholar 

  • Kochen S. (1985). A new interpretation of quantum mechanics. In: Lahti, P. and Mittelstaedt, P. (eds) Symposium on the foundations of modern physics, pp 1–20. World Scientific Publishing Co., Teaneck, N. J

    Google Scholar 

  • Kuhlmann M., Lyre H. and Wayne A. (2002). Ontological aspects of quantum field theory. New Jersey, World Scientific

    Google Scholar 

  • Leplin J. (1984). Scientific realism. University of California Press, Berkeley

    Google Scholar 

  • MacKinnon E. (1972). The problem of scientific realism. Appleton Century Crofts, New York

    Google Scholar 

  • MacKinnon E. (1979). Scientific realism: The new debates. Philosophy of Science, 46: 501–532

    Article  Google Scholar 

  • MacKinnon, E. (forthcoming). Interpreting physics: The classical/quantum divide.

  • MacKinnon, E. (forthcoming). The standard model as a philosophical challenge. In C. Bicchieri, & J. M. Alexander (Eds.), Proceedings of the 2006 philosophy of science association meeting. East Lansing, Michigan: Philosophy of Science Association.

  • Maxwell, J. 1954[1891]. A treatise on electricity and magnetism. New York: Dover (Reprint).

  • Mehra J., Milton K. and Schwinger J. (2000). Climbing the mountain: The scientific biography of Julian Schwinger. Oxford University Press, Oxford, New York

    Google Scholar 

  • Messiah A. (1964). Quantum mechanics: Vol. I. Amsterdam, North Holland

    Google Scholar 

  • Milton K. (1996). Julian Schwinger: Source theory and the UCLA years. In: Ng, Y. (eds) Julian Schwinger, the physicist, the teacher and the man, pp. World Scientific, Singapore

    Google Scholar 

  • Ng Y. (1996). Julian Schwinger, the physicist, the teacher and the man. World Scientific, Singapore

    Google Scholar 

  • Pauli W. (1947). Review of Hans Reichenbach’s philosophical foundations of quantum physics. Dialectica, 1: 176–178

    Article  Google Scholar 

  • Riordan M. (1992). The discovery of quarks. Science, 256: 1287–1293

    Article  Google Scholar 

  • Ruetsche L. (2002). Interpreting quantum field theory. Philosophy of Science, 69: 348–378

    Article  Google Scholar 

  • Scerri E. (2000). The failure of reduction and how to resist disunity of the sciences in the context of chemical education. Science and Education, 9: 405–425

    Article  Google Scholar 

  • Scerri E. and McIntyre L. (1997). The case for the philosophy of chemistry. Synthese, 111: 213–232

    Article  Google Scholar 

  • Schweber S. (1994). QED and the men who made it. Princeton University Press, Princeton

    Google Scholar 

  • Schwinger J. (1958). Selected papers on quantum electrodynamics. Dover, New York

    Google Scholar 

  • Schwinger, J. (1959). The algebra of microscopic measurement. Proceedings of the National Academy of Sciences of the United States of America, 45, 1542.

  • Schwinger J. (1962a). Gauge invariance and mass. Physical Review, 125: 397–398

    Article  Google Scholar 

  • Schwinger and J. (1962b). Gauge invariance and mass. II. Physical Review, 128: 2425

    Article  Google Scholar 

  • Schwinger J. (1964). Field theory of matter. Physical Review, 135: B816–B830

    Article  Google Scholar 

  • Schwinger J. (1965). Field theory of particles. In: Deser, S. and Ford, K. (eds) Lectures on particles and field theory., pp 145–287. Prentice-Hall Inc., Englewood Cliffs, N. J

    Google Scholar 

  • Schwinger J. (1966). Particles and sources. Physical Review, 152: 1219

    Article  Google Scholar 

  • Schwinger J. (1967). Sources and electrodynamics. Physical Review, 158: 1391

    Article  Google Scholar 

  • Schwinger J. (1968a). Sources and magnetic charge. Physical Review, 173: 1536–1540

    Article  Google Scholar 

  • Schwinger J. (1968b). Sources and gravitons. Physical Review, 173: 1264–1268

    Article  Google Scholar 

  • Schwinger J. (1969). Particles and sources. Gordon and Breach, New York

    Google Scholar 

  • Schwinger J. (1970a). Particles, sources and fields. Reading, Mass., Addison-Wesley

    Google Scholar 

  • Schwinger J. (1970b). Quantum kinematics and dynamics. W. A. Benjamin, Inc., New York

    Google Scholar 

  • Schwinger J. (1983). Renormalization theory of quantum electrodynamics. In: Brown, L. and Hoddeson, L. (eds) The birth of particle physics., pp. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwinger, J. (1993). The greening of quantum field theory: George and I. hep-ph/9310283.

  • Seibt, J. (2002). Quanta, tropes, or processes: Ontologies for QFT beyond the myth of substance. In M. Kuhlmann, H. Lyre, & A. Wayne (2002). Ontological aspects of quantum field theory, New Jersey: World Scientific.

  • Shimony A. (1993). Search for a naturalistic world view: Volume I. Cambridge University Press, New York

    Google Scholar 

  • Smolin, J. (2003). Can quantum cryptography imply quantum mechanics. arXiv:quant-ph/0310067.

  • Strawson P. (1959). Individuals: An essay in descriptive metaphysics. Methuen, London

    Google Scholar 

  • Suppe F. (1974). The search for philosophic understanding of scientific theories. In: Suppe, F. (eds) The structure of scientific theories, pp 3–241. University of Illinois Press, Urbana

    Google Scholar 

  • Suppe, F. (2000). Understanding scientific theories: An assessment of developments, 1969–1998. In D. Howard (Ed.), PSA1998: Part II, S116–S127. East Lansing, Michigan: Philosophy of Science Association.

  • Teller P. (2004). How we dapple the world. Philosophy of Science, 71: 425–447

    Article  Google Scholar 

  • Thompson S. (1910). The life of William Thomson, Baron Kelvin of Largs. Macmillan, London

    Google Scholar 

  • Fraassen B. (1991). Quantum mechanics: An empiricist view. Clarendon Press, Oxford

    Google Scholar 

  • Vermaas P. and Dieks D. (1995). The modal interpretation of quantum mechanics and its generalization to density. Foundations of Physics, 25: 145–157

    Article  Google Scholar 

  • Vermaas P. (1996). Unique transition probabilities in the modal interpretation. Studies in the History and Philosophy of Modern Physics, 27B: 133–159

    Article  Google Scholar 

  • Wallace, D. (2001). In defence of naiveté: The conceptual status of Lagrangian quantum field theory. arXiv.org/abs/quant-ph/0112148.

  • Weinberg S. (1995). The quantum theory of fields. Vol. I : Foundations. Cambridge University Press, Cambridge

    Google Scholar 

  • Weinberg S. (2001). Can science explain everything? anything?. New York Review of Books, 48: 47–50

    Google Scholar 

  • Whitehead A. (1929). Process and reality: An essay in cosmology. Macmillan, New York

    Google Scholar 

  • Wilczek, F. (1998). Quantum field theory. arXiv:hep-th/9803075.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward MacKinnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKinnon, E. Schwinger and the Ontology of Quantum Field Theory. Found Sci 12, 295–323 (2007). https://doi.org/10.1007/s10699-007-9109-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-007-9109-4

Keywords

Navigation