Advertisement

Foundations of Science

, Volume 12, Issue 4, pp 295–323 | Cite as

Schwinger and the Ontology of Quantum Field Theory

  • Edward MacKinnon
Article

Abstract

An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic methodology extended a strict measurement-based formulation of quantum mechanics through field theory. His extension also excluded the quark hypothesis and the standard model. Quarks and local gauge invariance are postulates that go beyond the limits of an epistemological interpretation of quantum mechanics. The ontological significance ascribed to these advances depends on the role accorded ontology.

Keywords

Quantum field Quantum mechanics Ontology Epistemology Schwinger Particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardi L. (1995). Can mathematics help solving the interpretational problems of quantum mechanics?. Il Nuovo Cimento 110B: 685–721 Google Scholar
  2. Arntzenius F. (1990). Casual paradoxes in special relativity. The British Journal for the Philosophy of Science, 41: 223–243 CrossRefGoogle Scholar
  3. Atmanspacher, H., & Primas, H. (2002). Epistemic and ontic quantum realities. PhiScArchives, 938.Google Scholar
  4. Binétruy P. (2006). Supersymmetry: Theory, experiment and cosmology. Oxford University Press, Oxford Google Scholar
  5. Blackburn S. (1993). Essays in Quasi-Realism. Oxford University Press, New York Google Scholar
  6. Bohr N. and Rosenfeld L. (1933). On the question of the measurability of electromagnetic field quantities. In: Wheeler, J. and Zurek, W. (eds) Quantum theory and measurement., pp 478–522. Princeton University Press, Princeton Google Scholar
  7. Bohr N. (1950). Field and charge measurements in quantum electrodynamics. Physical Review, 78: 794–798 CrossRefGoogle Scholar
  8. Boyd R. (1983). On the current status of the issue of scientific realism. Erkenntnis, 19: 45–90 CrossRefGoogle Scholar
  9. Cao T. (1998). Conceptual developments of 20th century field theories. Cambridge University Press, Cambridge Google Scholar
  10. Castellani E. (2002). Reductionism, emergence and effective field theories. Studies in History and Philosophy of Science B, 33: 251–267 CrossRefGoogle Scholar
  11. Clifton, R., & Halvorson, H. (2001). Are rindler quanta real? Inequivalent particle concepts in quantum field theory. philsci-archive, 73.Google Scholar
  12. Clifton R., Bub J. and Halvorson H. (1994). Characterizing quantum theory in terms of information–theoretic constraints. Foundations of Physics, 33: 1561–1591 CrossRefGoogle Scholar
  13. Clifton R. (1996). The properties of modal interpretations of quantum mechanics. British Journal for Philosophy of Science, 47: 371–398 CrossRefGoogle Scholar
  14. Darrigol O. (1991). Coherence et complétude de la mécanique quantique: l’example de Bohr. Review d’Histoire de Sciences, 44: 137–179 Google Scholar
  15. Davidson D. (2001). Subjective, intersubjective, objective. Clarendon Press, Oxford Google Scholar
  16. Diecks D. (1988). The formalism of quantum theory: An objective description of reality?. Annalen der Physik 7: 174–190 CrossRefGoogle Scholar
  17. Dieks D. (1989). Quantum Mechanics without the Projection Postulate and its Realistic Interpretation. Foundations of Physics, 19: 1395–1423 CrossRefGoogle Scholar
  18. Dieks D. (1994). Modal interpretation of quantum mechanics, measurements and macroscopic. Physical Review A, 49: 2289–2300 CrossRefGoogle Scholar
  19. Dirac P. (1935). The principles of quantum mechanics, (2nd. ed.). Cambridge University Press, Cambridge Google Scholar
  20. Dirac P. (1958). The principles of quantum mechanics, (4th ed.). Clarendon Press, Oxford Google Scholar
  21. Dirac, P. (1964). Foundations of quantum theory. Lecture at Yeshiva University.Google Scholar
  22. Feynman R. (1974). Structure of the Proton. Science, 183: 601–610 CrossRefGoogle Scholar
  23. Flato, M., Fronsdal, C., & Milton, K. (1979). Selected Papers (1937–1976) of Julian Schwinger. Dordrecht: Holland: D. Reidel Publishing Company.Google Scholar
  24. Fourier, J. 1955[1822]. The analytical theory of heat. New York: DoverGoogle Scholar
  25. Fraser, D. (forthcoming). The problem of theory choice for the interpretation of quantum field theory. In C. Bicchieri, & J. M. Alexander (Eds.), Proceedings of the 2006 Philosophy of Science Association Meeting. Philosophy of Science Association.Google Scholar
  26. Fuchs, C. (2001). Quantum foundations in the light of quantum information. In A. Gonis, & P. Turchi (Eds.), Decoherence and its implications in quantum computation and information transfer: Proceedings of the NATO Advanced Research Workshop, Mykonos, Greece, June 25–30, 2000, 39–82. Amsterdam: IOS Press.Google Scholar
  27. Furth R. (1956). Investigations on the theory of Brownian Motion. Dover, New York Google Scholar
  28. Gell-Mann M and Ne’eman Y. (1964). The eightfold way. W. A. Benjamin, New York Google Scholar
  29. Glashow S. (1996). The Road to Electroweak Unification. In: Ng, Y. (eds) Julian Schwinger, the physicist, the Teacher and the man., pp. World Scientific, Singapore Google Scholar
  30. Gomatam, R. (forthcoming). Bohr’s interpretation and the copenhagen interpretation—Are they mutually exclusive? Philosophy of Science.Google Scholar
  31. Gottfried K. (1966). Quantum mechanics. Volume I: Fundamentals. W. A. Benjamin, New York Google Scholar
  32. Grinbaum A. (2004). Le rôle de l’information dans la théorie quantique. Dissertation: University of Paris, arXiv:quant-ph/0410071.Google Scholar
  33. Haag R. (1992). Local quantum physics: Fields, particles, algebras. Springer-Verlag, Berlin Google Scholar
  34. Halvorson H., Clifton R. (2002). No place for particles in relativistic quantum theories. Philosophy of Science 69, 1–28 CrossRefGoogle Scholar
  35. Halvorson, H. & Muger, M. (2006). Algebraic quantum field theory. PhilSciArchives, 2633.Google Scholar
  36. Halvorson H. (2004). A note on information theoretic characterization of physical theories. Studies in History and Philosophy of Modern Physics, 35: 277–293 CrossRefGoogle Scholar
  37. Healey R. (1989). The philosophy of quantum mechanics: An interactive interpretation. Cambridge University Press, Cambridge Google Scholar
  38. Healey R. (1991). Holism and nonseparability. Journal of Philosophy, 88: 393–421 CrossRefGoogle Scholar
  39. Heisenberg W. (1958). Physics and philosophy: The revolution in modern science. Harper and Brothers, New York Google Scholar
  40. Heisenberg W. (1976). The nature of elementary particles. Physics Today, 29: 32–39 CrossRefGoogle Scholar
  41. Higgs P. (1997). Spontaneous breaking of symmetry. In: Hoddeson, L. et al. (eds) The rise of the standard model, pp. Cambridge University Press, Cambridge Google Scholar
  42. Hughes R. (1989). The structure and interpretation of quantum mechanics. Harvard University Press, Cambridge Google Scholar
  43. Kochen S. (1985). A new interpretation of quantum mechanics. In: Lahti, P. and Mittelstaedt, P. (eds) Symposium on the foundations of modern physics, pp 1–20. World Scientific Publishing Co., Teaneck, N. J Google Scholar
  44. Kuhlmann M., Lyre H. and Wayne A. (2002). Ontological aspects of quantum field theory. New Jersey, World Scientific Google Scholar
  45. Leplin J. (1984). Scientific realism. University of California Press, Berkeley Google Scholar
  46. MacKinnon E. (1972). The problem of scientific realism. Appleton Century Crofts, New York Google Scholar
  47. MacKinnon E. (1979). Scientific realism: The new debates. Philosophy of Science, 46: 501–532 CrossRefGoogle Scholar
  48. MacKinnon, E. (forthcoming). Interpreting physics: The classical/quantum divide.Google Scholar
  49. MacKinnon, E. (forthcoming). The standard model as a philosophical challenge. In C. Bicchieri, & J. M. Alexander (Eds.), Proceedings of the 2006 philosophy of science association meeting. East Lansing, Michigan: Philosophy of Science Association.Google Scholar
  50. Maxwell, J. 1954[1891]. A treatise on electricity and magnetism. New York: Dover (Reprint).Google Scholar
  51. Mehra J., Milton K. and Schwinger J. (2000). Climbing the mountain: The scientific biography of Julian Schwinger. Oxford University Press, Oxford, New York Google Scholar
  52. Messiah A. (1964). Quantum mechanics: Vol. I. Amsterdam, North Holland Google Scholar
  53. Milton K. (1996). Julian Schwinger: Source theory and the UCLA years. In: Ng, Y. (eds) Julian Schwinger, the physicist, the teacher and the man, pp. World Scientific, Singapore Google Scholar
  54. Ng Y. (1996). Julian Schwinger, the physicist, the teacher and the man. World Scientific, Singapore Google Scholar
  55. Pauli W. (1947). Review of Hans Reichenbach’s philosophical foundations of quantum physics. Dialectica, 1: 176–178 CrossRefGoogle Scholar
  56. Riordan M. (1992). The discovery of quarks. Science, 256: 1287–1293 CrossRefGoogle Scholar
  57. Ruetsche L. (2002). Interpreting quantum field theory. Philosophy of Science, 69: 348–378 CrossRefGoogle Scholar
  58. Scerri E. (2000). The failure of reduction and how to resist disunity of the sciences in the context of chemical education. Science and Education, 9: 405–425 CrossRefGoogle Scholar
  59. Scerri E. and McIntyre L. (1997). The case for the philosophy of chemistry. Synthese, 111: 213–232 CrossRefGoogle Scholar
  60. Schweber S. (1994). QED and the men who made it. Princeton University Press, Princeton Google Scholar
  61. Schwinger J. (1958). Selected papers on quantum electrodynamics. Dover, New York Google Scholar
  62. Schwinger, J. (1959). The algebra of microscopic measurement. Proceedings of the National Academy of Sciences of the United States of America, 45, 1542.Google Scholar
  63. Schwinger J. (1962a). Gauge invariance and mass. Physical Review, 125: 397–398 CrossRefGoogle Scholar
  64. Schwinger and J. (1962b). Gauge invariance and mass. II. Physical Review, 128: 2425 CrossRefGoogle Scholar
  65. Schwinger J. (1964). Field theory of matter. Physical Review, 135: B816–B830 CrossRefGoogle Scholar
  66. Schwinger J. (1965). Field theory of particles. In: Deser, S. and Ford, K. (eds) Lectures on particles and field theory., pp 145–287. Prentice-Hall Inc., Englewood Cliffs, N. J Google Scholar
  67. Schwinger J. (1966). Particles and sources. Physical Review, 152: 1219 CrossRefGoogle Scholar
  68. Schwinger J. (1967). Sources and electrodynamics. Physical Review, 158: 1391 CrossRefGoogle Scholar
  69. Schwinger J. (1968a). Sources and magnetic charge. Physical Review, 173: 1536–1540 CrossRefGoogle Scholar
  70. Schwinger J. (1968b). Sources and gravitons. Physical Review, 173: 1264–1268 CrossRefGoogle Scholar
  71. Schwinger J. (1969). Particles and sources. Gordon and Breach, New York Google Scholar
  72. Schwinger J. (1970a). Particles, sources and fields. Reading, Mass., Addison-Wesley Google Scholar
  73. Schwinger J. (1970b). Quantum kinematics and dynamics. W. A. Benjamin, Inc., New York Google Scholar
  74. Schwinger J. (1983). Renormalization theory of quantum electrodynamics. In: Brown, L. and Hoddeson, L. (eds) The birth of particle physics., pp. Cambridge University Press, Cambridge Google Scholar
  75. Schwinger, J. (1993). The greening of quantum field theory: George and I. hep-ph/9310283.Google Scholar
  76. Seibt, J. (2002). Quanta, tropes, or processes: Ontologies for QFT beyond the myth of substance. In M. Kuhlmann, H. Lyre, & A. Wayne (2002). Ontological aspects of quantum field theory, New Jersey: World Scientific.Google Scholar
  77. Shimony A. (1993). Search for a naturalistic world view: Volume I. Cambridge University Press, New York Google Scholar
  78. Smolin, J. (2003). Can quantum cryptography imply quantum mechanics. arXiv:quant-ph/0310067.Google Scholar
  79. Strawson P. (1959). Individuals: An essay in descriptive metaphysics. Methuen, London Google Scholar
  80. Suppe F. (1974). The search for philosophic understanding of scientific theories. In: Suppe, F. (eds) The structure of scientific theories, pp 3–241. University of Illinois Press, Urbana Google Scholar
  81. Suppe, F. (2000). Understanding scientific theories: An assessment of developments, 1969–1998. In D. Howard (Ed.), PSA1998: Part II, S116–S127. East Lansing, Michigan: Philosophy of Science Association.Google Scholar
  82. Teller P. (2004). How we dapple the world. Philosophy of Science, 71: 425–447 CrossRefGoogle Scholar
  83. Thompson S. (1910). The life of William Thomson, Baron Kelvin of Largs. Macmillan, London Google Scholar
  84. Fraassen B. (1991). Quantum mechanics: An empiricist view. Clarendon Press, Oxford Google Scholar
  85. Vermaas P. and Dieks D. (1995). The modal interpretation of quantum mechanics and its generalization to density. Foundations of Physics, 25: 145–157 CrossRefGoogle Scholar
  86. Vermaas P. (1996). Unique transition probabilities in the modal interpretation. Studies in the History and Philosophy of Modern Physics, 27B: 133–159 CrossRefGoogle Scholar
  87. Wallace, D. (2001). In defence of naiveté: The conceptual status of Lagrangian quantum field theory. arXiv.org/abs/quant-ph/0112148.Google Scholar
  88. Weinberg S. (1995). The quantum theory of fields. Vol. I : Foundations. Cambridge University Press, Cambridge Google Scholar
  89. Weinberg S. (2001). Can science explain everything? anything?. New York Review of Books, 48: 47–50 Google Scholar
  90. Whitehead A. (1929). Process and reality: An essay in cosmology. Macmillan, New York Google Scholar
  91. Wilczek, F. (1998). Quantum field theory. arXiv:hep-th/9803075.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.California State University, East Bay (Emeritus)OaklandUSA

Personalised recommendations