Advertisement

Foundations of Chemistry

, Volume 12, Issue 3, pp 203–221 | Cite as

Mereology and quantum chemistry: the approximation of molecular orbital

  • Jean-Pierre Llored
Article

Abstract

Mulliken proposed an Aufbauprinzip for the molecules on the basis of molecular spectroscopy while establishing, point by point, his concept of molecular orbit. It is the concept of electronic state which becomes the lever for his attribution of electronic configurations to a molecule. In 1932, the concept of orbit was transmuted into that of the molecular orbital to integrate the probabilistic approach of Born and to achieve quantitative accuracy. On the basis of the quantum works of Hund, Wigner, Lennard-Jones and group theory, he suggested the fragment method to establish the characteristics of molecular orbital for polyatomic molecules. These developments make it possible to bring elements of thought on the relation between a molecular “whole” and its “parts”. An operational realism combined with the second law of thermodynamics can pave the way for interesting tracks in the mereological study of chemical systems.

Keywords

Reduction Emergence Mereology Molecule Atom Mixed Aggregate Properties Spectroscopic state Valence Quantum state 

Notes

Acknowledgments

I warmly thank Isabelle Stengers, Rom Harré, Eric Scerri and Michel Bitbol for their advice, their second readings of this work and above all for their deep humanism.

References

  1. Bensaude-Vincent B.: Faut-il avoir peur de la chimie?, Les empêcheurs de penser en rond éditeurs, Paris (2005)Google Scholar
  2. Bensaude-Vincent B.: Le mixte: un défi au tout comme somme des parties In: Le tout et les parties dans les systèmes naturels. Under the direction of Thierry Martin, Collection Philosophie des sciences, Vuibert, Paris (2007)Google Scholar
  3. Bloch L.: Introduction à l’étude des spectres de bandes et de la constitution des molécules, Annals of the Institut Henri Poincaré, vol 319, Issue 4, Paris (1930)Google Scholar
  4. Cartwright, N.: Nature’s Capacities and Their Measurement. Oxford University Press, Oxford (1989)Google Scholar
  5. Cassirer E.: Substance et fonction. Éléments pour une théorie du concept, traduction française de Pierre Caussat, pp. 236–254. Les éditions de minuit, Paris (1977)Google Scholar
  6. Cotton, A.: Chemical Applications of Group Theory. Wiley-Interscience, New York (1971)Google Scholar
  7. Duhem, P.: Le mixte et la combinaison chimique. Essai sur l’évolution d’une idée, Fayard, Paris (1985)Google Scholar
  8. Dumas J.B. Leçons sur la philosophie chimique, Paris, rééd. Bruxelles, Culture et civilisation (1972) (1837)Google Scholar
  9. Earley J.E.: Varieties of properties. An alternative distinction among qualities In: Earley J.E. (ed.) Chemical Explanation. Characteristics, Development, Autonomy. Annals of the New York Academy of sciences vol 988, Issue 1, pp. 80–89. The New York Academy of Science Publisher, New York (2003)Google Scholar
  10. Earley, J.E.: Why there is no salt in the sea. Found. Chem. 7, 85–102 (2005)CrossRefGoogle Scholar
  11. Hacking, I.: Representing and Intervening. Cambridge University Press, Cambridge (1983)Google Scholar
  12. Hund, F.: Zur Deutung einiger Erscheinungen in den Molekelspektren. Zeitschrift für Physik 36, 657–674 (1926)CrossRefGoogle Scholar
  13. Hund F.: On the Interpretation of Molecular Spectra I, Zeitschrift für Physik 40. (1927) (Reproduced in (2000): H. Hettema, Quantum Chemistry: Classic Scientific Papers, World Scientific Publishing, 226) Google Scholar
  14. Hund F.: Zeitschrift für Physik. 74, 1 (1932)Google Scholar
  15. Hund F.: The History of Quantum Theory. Harrap London. Geschichte der Quantentheorie (1967), translated by Georges G. Harrap & Co. Ltd, London, 187 (1974)Google Scholar
  16. Jean Y., Volatron F.: Les orbitales moléculaires en chimie. McGraw-Hill, Paris. (1991)Google Scholar
  17. Klein, U.: Tools and Modes of Representation in the Laboratory Sciences. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  18. Langmuir, I.: The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc. 41, 868–934 (1919)CrossRefGoogle Scholar
  19. Mulliken, R.S.: Systematic relations between electronic structure and band-spectrum structure in diatomic molecules I. Proc. Nat. Acad. Sci. USA. 12, 158–162 (1926)Google Scholar
  20. Mulliken R.S.: The assigment of quantum numbers for electrons in molecules. I. Rev. Mod. Phys. 32, 186–189 (1928)Google Scholar
  21. Mulliken R.S.: Interpretation of Band Spectra, Part I, IIa, IIb. Rev. Mod. Phys. 2, 60–70 (1930)Google Scholar
  22. Mulliken R.S.: Interpretation of band spectra, part IIc, empirical band types. Rev. Mod. Phys. 1, 123 (1931a)Google Scholar
  23. Mulliken R.S.: Bonding power of electrons and theory of valence. Chem. Rev. 9, 350 (1931b)Google Scholar
  24. Mulliken R.S. Interpretation of band spectra, part III. Electron quantum numbers and states of molecules and their atoms. Rev. Mod. Phys. 4, 1–86 (1932a)Google Scholar
  25. Mulliken R.S.: Electronic structures of polyatomic molecules and valence I. Rev. Mod. Phys. 40, 55–57 (1932b)Google Scholar
  26. Mulliken R.S.: Electronic structures of polyatomic molecules and valence II. General consideration. Phys. Rev. 41, 49–71 (1932c)Google Scholar
  27. Mulliken R.S.: Electronic structures of polyatomic molecules and valence III. Quantum theory of the double bond. Rev. Mod. Phys. 41, 754 (1932d)Google Scholar
  28. Mulliken R.S.: Electronic structures of polyatomic molecules and valence IV. Electronic states, quantum theory of the double bond. Rev. Mod. Phys. 43, 279–280 (1933)Google Scholar
  29. Mulliken R. S.: Electronic structures of polyatomic molecules and valence VI. On the method of molecular orbitals. J. Chem. Phys. 3, 375 (1935)Google Scholar
  30. Mulliken, R.S.: Structure and ultraviolet spectra of ethylene, butadiene, and their alkyl derivatives. Rev. Mod. Phys. 14, 265–274 (1942a)CrossRefGoogle Scholar
  31. Mulliken, R.S.: Electronic structures and spectra of triatomic oxide molecules. Rev. Mod. Phys. 14, 204–215 (1942b)CrossRefGoogle Scholar
  32. Mulliken R.S.: Spectroscopy, molecular orbital and chemical bonding (Nobel lecture), Science 157 (1967)Google Scholar
  33. Mulliken, R.S.: The path to molecular orbital. Pure Appl. Chem. 24, 203–215 (1970)CrossRefGoogle Scholar
  34. Murrell, J.N.: The Theory of the Electronic Spectra of Organic Molecules, pp. 270–283. Chapman and Hall, London (1963)Google Scholar
  35. Needham P.: Chemical substances and intensive properties. In: Earley J.E. (ed.) Chemical Explanation. Characteristics, Development, Autonomy. Annals of the New York Academy of sciences 988, 1 (2003)Google Scholar
  36. Park B.S.: A principle written in diagrams: The Aufbau principle for molecules and its visual representations. In: Klein U. (ed.) Tools and Modes of Representation in the Laboratory Sciences. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  37. Luisi P.L.: Emergence in chemistry: Chemistry as the embodiment of Emergence. Found. Chem. 2, 183–200 (2002)Google Scholar
  38. Rivail J.-L.: Eléments de chimie quantique à l’usage des chimistes. Savoirs Actuels, InterEditions/Editions CNRS, Paris (1989)Google Scholar
  39. Scerri, E.R.: The ambiguity of reduction. HYLE 13(2), 67–81 (2007)Google Scholar
  40. Serres M.: Rameaux. Le Pommier, Paris (2004)Google Scholar
  41. Stengers I.: La vie et l’artifice: visages de l’émergence In: Cosmopolitiques II, La découverte, Paris (2003)Google Scholar
  42. Sommerfeld A.: Atomic Structure and Spectral Lines, translated by H. L. Brose, Methuen, London (1934)Google Scholar
  43. Vemulapalli G.K.: Property reduction in chemistry. Some lessons In: Earley J.E. (ed.) Chemical Explanation. Characteristics, Development, Autonomy. Annals of the New York Academy of sciences, 988 (2003)Google Scholar
  44. Walton, P.H.: Beginning Group Theory for Chemists, Workbooks in Chemistry. Oxford University Press, Oxford (1998)Google Scholar
  45. Alfred North Whitehead: Adventures of Ideas. Macmillan, New York (1967)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Ecole Polytechnique CREA/CNRSPalaiseau CedexFrance

Personalised recommendations