Fluid Dynamics

, Volume 41, Issue 4, pp 629–632 | Cite as

Bifurcations in the transonic flow past a symmetric airfoil

  • A. G. Kuz’min


Transonic flow past an airfoil with a small curvature in its midchord region is numerically investigated. The branching of the stationary solutions of the Euler equations is established and attributed to flow instability at certain angles of attack and freestream Mach numbers. The dependence of the lift coefficient on these parameters is studied.


airfoil local supersonic zones instability bifurcations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Kuz’min, “Interaction of a shock wave with the sonic line,” in: IUTAM Symp. Transsonicum IV, Kluwer, Dordrecht (2003), p. 13.Google Scholar
  2. 2.
    A. G. Kuz’min and A. V. Ivanova, “Unstable regimes of inviscid transonic flow in a channel,” Mat. Model., 16, No. 10, 35 (2004).Google Scholar
  3. 3.
    A. G. Kuz’min and A. V. Ivanova, “The structural instability of transonic flow associated with amalgamation/splitting of supersonic regions,” J. Theor. Comp. Fluid Dyn., 18, No. 5, 335 (2004).CrossRefGoogle Scholar
  4. 4.
    A. V. Ivanova and A. G. Kuz’min, “Nonuniqueness of the transonic flow past an airfoil,” Fluid Dynamics, 39, No. 4, 642 (2004).MathSciNetCrossRefGoogle Scholar
  5. 5.
    D. S. Semenov, “Unstable regimes of transonic flow past an airfoil,” Mat. Model., 16, No. 11, 101 (2004).MathSciNetGoogle Scholar
  6. 6.
    A. G. Kuz’min, “Bifurcation of transonic flow over a flattened airfoil,” in: D. A. Caughey and M. M. Hafez (eds.), Frontiers of Fluid Mechanics, World Scient. Publ. Co. Ltd (2005), p. 285.Google Scholar
  7. 7.
    A. G. Kuz’min and A. V. Ivanova, “Structural instability of transonic flow past an airfoil,” Inzh.-Fiz. Zh., 77, No. 5, 134 (2004).Google Scholar
  8. 8.
    R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow, Springer, New York (1990).MATHGoogle Scholar
  9. 9.
    B. Mohammadi, “Fluid dynamics computation with NSC2KE: an user guide, release 1.0”, INRIA Techn. Rep. No. RT-0164 (1994).Google Scholar
  10. 10.
    M. Delanyae, Ph. Geuzaine, and J. A. Essers, “Development and application of quadratic reconstruction schemes for compressible flows on unstructured adaptive grids,” AIAA Paper No. 2120 (1997); 13th AIAA Conf. Snowmass (1997), p. 250.Google Scholar
  11. 11.
    M. M. Hafez and W. H. Guo, “Nonuniqueness of transonic flows,” Acta Mech., 138, No. 3/4, 177 (1999).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. G. Kuz’min

There are no affiliations available

Personalised recommendations