# Modeling of the turbulent motion of particles in a vertical channel

Article

Received:

- 57 Downloads
- 5 Citations

## Abstract

The results of modeling of the statistical parameters of a turbulent particle motion in a vertical plane channel are presented. The model is based on a kinetic equation for the particle velocity probability density function. The results are compared with direct numerical simulation.

## Keywords

turbulence particles kinetic equation probability density function vertical channel accumulation effect## Preview

Unable to display preview. Download preview PDF.

## References

- 1.X. Pialat, O. Simonin, and P. Villedieu, “Direct coupling between Lagrangian and Eulerian approaches in turbulent gas-particle flows,” in:
*Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77078._Houston, USA*(2005).Google Scholar - 2.M. Armenio, U. Piomelli, and V. Fiorotto, “Effect of subgrid scales on particle motion,”
*Phys Fluids*,**11**, No. 10, 3030–3042 (1999).CrossRefADSGoogle Scholar - 3.M. Boivin, O. Simonin, and K. D. Squires, “On the prediction of gas-solid flows with two-way coupling using large-eddy simulation,”
*Phys. Fluids*,**12**, No. 8, 2080–2090 (2000).CrossRefADSGoogle Scholar - 4.Y. Yamamoto, M. Potthoff, T. Tanaka, T. Kajishima, and Y. Tsuji, “Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions,”
*J. Fluid Mech.*,**442**, 303–334 (2001).MATHCrossRefADSGoogle Scholar - 5.J. G. M. Kuerten and A. W. Vreman, “Can turbophoresis be predicted by large-eddy simulation?,”
*Phys. Fluids*,**17**, No. 1, 011701-1-011701-4 (2005).Google Scholar - 6.O. A. Druzhinin and S. E. Elghobashi, “Direct numerical simulation of bubble-laden turbulent flows using the two-fluid formulation,”
*Phys. Fluids*,**10**, No. 3, 685–697 (1998).CrossRefADSGoogle Scholar - 7.J. Ferry and S. Balachandar, “A fast Eulerian method for disperse two-phase flow,”
*Int. J. Multiphase Flow*,**27**, 1199–1226 (2001).CrossRefMATHGoogle Scholar - 8.R. V. R. Pandya and F. Mashayek, “Two-fluid large-eddy simulation approach for particle-laden turbulent flows,”
*Int. J. Heat Mass Transfer*,**45**, 4753–4759 (2002).MATHCrossRefGoogle Scholar - 9.P. Février, O. Simonin, and K. D. Squires, “Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and spatially-uncorrelated random distribution: theoretical formalism and numerical study,”
*J. Fluid Mech.*,**533**, 1–46 (2005).MATHADSCrossRefMathSciNetGoogle Scholar - 10.M. Moreau, B. Bedat, and O. Simonin, “From Euler-Lagrange to Euler-Euler large-eddy simulation approaches for gas-particle turbulent flows,” in:
*Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77306. Houston, USA*(2005).Google Scholar - 11.Y. A. Buevich, “Statistical hydromechanics of disperse systems. P.1. Physical background and general equations,”
*J. Fluid Mech.*,**49**, No. 3, 489–507 (1971).CrossRefADSGoogle Scholar - 12.I. V. Derevich and L. I. Zaichik, “Equation for the probability density of the particle velocity and temperature in a turbulent flow modeled by a Gaussian random field,”
*Prikl. Matem. Mekh.*,**54**, No. 5, 767–774 (1990).MATHGoogle Scholar - 13.M. W. Reeks, “On a kinetic equation for the transport of particles in turbulent flows,”
*Phys. Fluids A*,**3**, No. 3, 446–456 (1991).MATHMathSciNetCrossRefADSGoogle Scholar - 14.M. W. Reeks, “On the continuum equation for dispersed particles in nonuniform flows,”
*Phys. Fluids A*,**4**, No. 6, 1290–1303 (1992).MATHCrossRefADSGoogle Scholar - 15.D. C. Swailes and K.F.F. Darbyshire, “A generalized Fokker-Planck equation for particle transport in random media,”
*Physica A*,**242**, 38–48 (1997).CrossRefADSGoogle Scholar - 16.L. I. Zaichik, “Modeling of particle motion in a nonuniform turbulent flow on the basis of an equation for the probability density function,”
*Prikl. Matem. Mekh.*,**61**, No. 1, 132–138 (1997).MathSciNetGoogle Scholar - 17.K. E. Hyland, S. McKee, and M. W. Reeks, “Deviation of a PDF kinetic equation for the transport of particles in turbulent flow,”
*J. Phys. A: Math. Gen.*,**32**, 6169–6190 (1999).MATHMathSciNetCrossRefADSGoogle Scholar - 18.J. Pozorski and J.-P. Minier, “Probability density function modeling of dispersed two-phase turbulent flows,”
*Phys. Rev. E*,**59**, No. 1, 855–863 (1999).CrossRefADSGoogle Scholar - 19.I. V. Derevich, “Statistical modelling of mass transfer in turbulent two-phase dispersed flows. 1. Model development,”
*Int. J. Heat Mass Transfer*,**43**, No. 19, 3709–3723 (2000).MATHCrossRefGoogle Scholar - 20.R.V.R. Pandya and F. Mashyek, “Non-isothermal dispersed phase of particles in turbulent flow,”
*J. Fluid Mech.*,**475**, 205–245 (2003).MATHCrossRefADSGoogle Scholar - 21.V. M. Alipchenkov and L. I. Zaichik, “Statistical model of particle motion and dispersion in an anisotropic turbulent flow,”
*Fluid Dyn.*,**39**, No. 5, 735–747 (2004).CrossRefGoogle Scholar - 22.L. I. Zaichik, “A statistical model of particle transport and heat transfer in turbulent shear flow, ”
*Phys. Fluids*,**11**, No. 6, 1521–1534 (1999).CrossRefADSGoogle Scholar - 23.D.W.I. Rouson and J.K. Eaton, “Direct numerical simulation of particles interacting with a turbulent channel flow,” in:
*Proc. 7th Workshop on Two-Phase Predictions. Erlangen, Germany*, (1994).Google Scholar - 24.Q. Wang and K. D. Squires, “Large-eddy simulation of particle-laden turbulent channel flow,”
*Phys. Fluids*,**8**, No. 5, 1207–1223 (1996).MATHCrossRefADSGoogle Scholar - 25.K. Fukugata, S. Zahrai, and F.H. Bark, “Force balance in a turbulent particulate flow,”
*Int. J. Multiphase Flow*,**24**, 867–887 (1998).CrossRefGoogle Scholar - 26.M. Picciotto, C. Marchioli, M. W. Reeks, and A. Soldati, “Statistics of velocity and preferential concentration of micro-particles in boundary layer turbulence,”
*Nuclear Eng. Design*,**235**, 1239–1249 (2005).CrossRefGoogle Scholar - 27.M.W. Reeks, “The transport of disperse particles in inhomogeneous turbulence,”
*J. Aerosol Sci.*,**14**, No. 6, 729–739 (1983).CrossRefGoogle Scholar - 28.C. Marchioli and A. Soldati, “Mechanisms for particle transport and segregation in a turbulent boundary layer,”
*J. Fluid Mech.*,**468**, 283–315 (2002).MATHCrossRefADSGoogle Scholar - 29.J. Choi, K. Yeo, and C. Lee, “Lagrangian statistics in turbulent channel flow,”
*Phys. Fluids*,**16**, 779–793 (2004).CrossRefADSGoogle Scholar - 30.B. Oesterlé and L. I. Zaichik, “On Lagrangian time scales and particle dispersionmodeling in equilibrium turbulent shear flows,”
*Phys. Fluids*,**16**, No. 9, 3374–3384 (2004).MathSciNetCrossRefADSGoogle Scholar - 31.G. T. Csanady, “Turbulent diffusion of heavy-particles in the atmosphere,”
*J. Atmos. Sci.*,**20**, 201–208 (1963).CrossRefADSGoogle Scholar - 32.L.-P. Wang and D. E. Stock, “Dispersion of heavy particles in turbulent motion,”
*J. Atmos. Sci.*,**50**, No. 13, 1897–1913 (1993).CrossRefADSGoogle Scholar - 33.M. Sakiz and O. Simonin, “Development and validation of continuum particle-wall boundary conditions using Lagrangian simulation of a vertical gas-solid channel flow,” in:
*Proc. 7th Int. Symp. Gas-Solid Flows. ASME/FED*, Paper No. 7898 (1999).Google Scholar - 34.V. M. Alipchenkov, L. I. Zaichik, and O. Simonin, “Comparison of two approaches to constructing the boundary conditions for continuum equations of particle motion in a turbulent flow,” Teplofiz. Vys. Temp.,
**39**, No. 1, 108–114 (2001).Google Scholar - 35.B. L. Sawfold, “Reynolds number effects in Lagrangian stochastic models of turbulent dispersion, ”
*Phys. Fluids A*,**3**, 1577–1586 (1991).CrossRefADSGoogle Scholar - 36.L. I. Zaichik, O. Simonin, and V. M. Alipchenkov, “Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence,”
*Phys. Fluids*,**15**, No. 10, 2995–3005 (2003).MathSciNetCrossRefADSGoogle Scholar - 37.L. I. Zaichik and V. M. Alipchenkov, “Time of interaction of colliding particles with turbulent eddies,” Teplofiz. Aeromekh.,
**6**, No. 4, 529-537 (1999).Google Scholar - 38.S. Corrsin, “Progress report on some turbulent diffusion research,” in: Advances in Geophysics. V.6, Acad. Press, New York (1959), pp. 161–184.Google Scholar
- 39.G. A. Kallio and M. W. Reeks, “A numerical simulation of particle deposition in turbulent boundary layer,”
*Int. J. Multiphase Flow*,**15**, No. 3, 433–446 (1989).CrossRefGoogle Scholar - 40.K. Fukagata, S. Zahrai, F. H. Bark, and S. Kondo, “Influences of the near-wall drag correction in a Lagrangian simulation of particulate turbulent channel flow,” in:
*Proc. 1st Int. Symp. Turbulence and Shear Flow. 1999. Santa Barbara, USA*, Begel House, New York (1999), pp. 259–264.Google Scholar

## Copyright information

© Springer Science+Business Media, Inc. 2006