Fluid Dynamics

, Volume 41, Issue 4, pp 531–544 | Cite as

Modeling of the turbulent motion of particles in a vertical channel

  • V. M. Alipchenkov
  • L. I. Zaichik


The results of modeling of the statistical parameters of a turbulent particle motion in a vertical plane channel are presented. The model is based on a kinetic equation for the particle velocity probability density function. The results are compared with direct numerical simulation.


turbulence particles kinetic equation probability density function vertical channel accumulation effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Pialat, O. Simonin, and P. Villedieu, “Direct coupling between Lagrangian and Eulerian approaches in turbulent gas-particle flows,” in: Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77078._Houston, USA (2005).Google Scholar
  2. 2.
    M. Armenio, U. Piomelli, and V. Fiorotto, “Effect of subgrid scales on particle motion,” Phys Fluids, 11, No. 10, 3030–3042 (1999).CrossRefADSGoogle Scholar
  3. 3.
    M. Boivin, O. Simonin, and K. D. Squires, “On the prediction of gas-solid flows with two-way coupling using large-eddy simulation,” Phys. Fluids, 12, No. 8, 2080–2090 (2000).CrossRefADSGoogle Scholar
  4. 4.
    Y. Yamamoto, M. Potthoff, T. Tanaka, T. Kajishima, and Y. Tsuji, “Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions,” J. Fluid Mech., 442, 303–334 (2001).MATHCrossRefADSGoogle Scholar
  5. 5.
    J. G. M. Kuerten and A. W. Vreman, “Can turbophoresis be predicted by large-eddy simulation?,” Phys. Fluids, 17, No. 1, 011701-1-011701-4 (2005).Google Scholar
  6. 6.
    O. A. Druzhinin and S. E. Elghobashi, “Direct numerical simulation of bubble-laden turbulent flows using the two-fluid formulation,” Phys. Fluids, 10, No. 3, 685–697 (1998).CrossRefADSGoogle Scholar
  7. 7.
    J. Ferry and S. Balachandar, “A fast Eulerian method for disperse two-phase flow,” Int. J. Multiphase Flow, 27, 1199–1226 (2001).CrossRefMATHGoogle Scholar
  8. 8.
    R. V. R. Pandya and F. Mashayek, “Two-fluid large-eddy simulation approach for particle-laden turbulent flows,” Int. J. Heat Mass Transfer, 45, 4753–4759 (2002).MATHCrossRefGoogle Scholar
  9. 9.
    P. Février, O. Simonin, and K. D. Squires, “Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and spatially-uncorrelated random distribution: theoretical formalism and numerical study,” J. Fluid Mech., 533, 1–46 (2005).MATHADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Moreau, B. Bedat, and O. Simonin, “From Euler-Lagrange to Euler-Euler large-eddy simulation approaches for gas-particle turbulent flows,” in: Proc. ASME Fluids Engng. Summer Conf. FEDS2005-77306. Houston, USA (2005).Google Scholar
  11. 11.
    Y. A. Buevich, “Statistical hydromechanics of disperse systems. P.1. Physical background and general equations,” J. Fluid Mech., 49, No. 3, 489–507 (1971).CrossRefADSGoogle Scholar
  12. 12.
    I. V. Derevich and L. I. Zaichik, “Equation for the probability density of the particle velocity and temperature in a turbulent flow modeled by a Gaussian random field,” Prikl. Matem. Mekh., 54, No. 5, 767–774 (1990).MATHGoogle Scholar
  13. 13.
    M. W. Reeks, “On a kinetic equation for the transport of particles in turbulent flows,” Phys. Fluids A, 3, No. 3, 446–456 (1991).MATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    M. W. Reeks, “On the continuum equation for dispersed particles in nonuniform flows,” Phys. Fluids A, 4, No. 6, 1290–1303 (1992).MATHCrossRefADSGoogle Scholar
  15. 15.
    D. C. Swailes and K.F.F. Darbyshire, “A generalized Fokker-Planck equation for particle transport in random media,” Physica A, 242, 38–48 (1997).CrossRefADSGoogle Scholar
  16. 16.
    L. I. Zaichik, “Modeling of particle motion in a nonuniform turbulent flow on the basis of an equation for the probability density function,” Prikl. Matem. Mekh., 61, No. 1, 132–138 (1997).MathSciNetGoogle Scholar
  17. 17.
    K. E. Hyland, S. McKee, and M. W. Reeks, “Deviation of a PDF kinetic equation for the transport of particles in turbulent flow,” J. Phys. A: Math. Gen., 32, 6169–6190 (1999).MATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    J. Pozorski and J.-P. Minier, “Probability density function modeling of dispersed two-phase turbulent flows,” Phys. Rev. E, 59, No. 1, 855–863 (1999).CrossRefADSGoogle Scholar
  19. 19.
    I. V. Derevich, “Statistical modelling of mass transfer in turbulent two-phase dispersed flows. 1. Model development,” Int. J. Heat Mass Transfer, 43, No. 19, 3709–3723 (2000).MATHCrossRefGoogle Scholar
  20. 20.
    R.V.R. Pandya and F. Mashyek, “Non-isothermal dispersed phase of particles in turbulent flow,” J. Fluid Mech., 475, 205–245 (2003).MATHCrossRefADSGoogle Scholar
  21. 21.
    V. M. Alipchenkov and L. I. Zaichik, “Statistical model of particle motion and dispersion in an anisotropic turbulent flow,” Fluid Dyn., 39, No. 5, 735–747 (2004).CrossRefGoogle Scholar
  22. 22.
    L. I. Zaichik, “A statistical model of particle transport and heat transfer in turbulent shear flow, ” Phys. Fluids, 11, No. 6, 1521–1534 (1999).CrossRefADSGoogle Scholar
  23. 23.
    D.W.I. Rouson and J.K. Eaton, “Direct numerical simulation of particles interacting with a turbulent channel flow,” in: Proc. 7th Workshop on Two-Phase Predictions. Erlangen, Germany, (1994).Google Scholar
  24. 24.
    Q. Wang and K. D. Squires, “Large-eddy simulation of particle-laden turbulent channel flow,” Phys. Fluids, 8, No. 5, 1207–1223 (1996).MATHCrossRefADSGoogle Scholar
  25. 25.
    K. Fukugata, S. Zahrai, and F.H. Bark, “Force balance in a turbulent particulate flow,” Int. J. Multiphase Flow, 24, 867–887 (1998).CrossRefGoogle Scholar
  26. 26.
    M. Picciotto, C. Marchioli, M. W. Reeks, and A. Soldati, “Statistics of velocity and preferential concentration of micro-particles in boundary layer turbulence,” Nuclear Eng. Design, 235, 1239–1249 (2005).CrossRefGoogle Scholar
  27. 27.
    M.W. Reeks, “The transport of disperse particles in inhomogeneous turbulence,” J. Aerosol Sci., 14, No. 6, 729–739 (1983).CrossRefGoogle Scholar
  28. 28.
    C. Marchioli and A. Soldati, “Mechanisms for particle transport and segregation in a turbulent boundary layer,” J. Fluid Mech., 468, 283–315 (2002).MATHCrossRefADSGoogle Scholar
  29. 29.
    J. Choi, K. Yeo, and C. Lee, “Lagrangian statistics in turbulent channel flow,” Phys. Fluids, 16, 779–793 (2004).CrossRefADSGoogle Scholar
  30. 30.
    B. Oesterlé and L. I. Zaichik, “On Lagrangian time scales and particle dispersionmodeling in equilibrium turbulent shear flows,” Phys. Fluids, 16, No. 9, 3374–3384 (2004).MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    G. T. Csanady, “Turbulent diffusion of heavy-particles in the atmosphere,” J. Atmos. Sci., 20, 201–208 (1963).CrossRefADSGoogle Scholar
  32. 32.
    L.-P. Wang and D. E. Stock, “Dispersion of heavy particles in turbulent motion,” J. Atmos. Sci., 50, No. 13, 1897–1913 (1993).CrossRefADSGoogle Scholar
  33. 33.
    M. Sakiz and O. Simonin, “Development and validation of continuum particle-wall boundary conditions using Lagrangian simulation of a vertical gas-solid channel flow,” in: Proc. 7th Int. Symp. Gas-Solid Flows. ASME/FED, Paper No. 7898 (1999).Google Scholar
  34. 34.
    V. M. Alipchenkov, L. I. Zaichik, and O. Simonin, “Comparison of two approaches to constructing the boundary conditions for continuum equations of particle motion in a turbulent flow,” Teplofiz. Vys. Temp., 39, No. 1, 108–114 (2001).Google Scholar
  35. 35.
    B. L. Sawfold, “Reynolds number effects in Lagrangian stochastic models of turbulent dispersion, ” Phys. Fluids A, 3, 1577–1586 (1991).CrossRefADSGoogle Scholar
  36. 36.
    L. I. Zaichik, O. Simonin, and V. M. Alipchenkov, “Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence,” Phys. Fluids, 15, No. 10, 2995–3005 (2003).MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    L. I. Zaichik and V. M. Alipchenkov, “Time of interaction of colliding particles with turbulent eddies,” Teplofiz. Aeromekh., 6, No. 4, 529-537 (1999).Google Scholar
  38. 38.
    S. Corrsin, “Progress report on some turbulent diffusion research,” in: Advances in Geophysics. V.6, Acad. Press, New York (1959), pp. 161–184.Google Scholar
  39. 39.
    G. A. Kallio and M. W. Reeks, “A numerical simulation of particle deposition in turbulent boundary layer,” Int. J. Multiphase Flow, 15, No. 3, 433–446 (1989).CrossRefGoogle Scholar
  40. 40.
    K. Fukagata, S. Zahrai, F. H. Bark, and S. Kondo, “Influences of the near-wall drag correction in a Lagrangian simulation of particulate turbulent channel flow,” in: Proc. 1st Int. Symp. Turbulence and Shear Flow. 1999. Santa Barbara, USA, Begel House, New York (1999), pp. 259–264.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. M. Alipchenkov
  • L. I. Zaichik

There are no affiliations available

Personalised recommendations