Advertisement

Fluid Dynamics

, Volume 40, Issue 5, pp 755–761 | Cite as

On Self-Oscillations during the Outflow of a Swirled Jet

  • V. N. Blazhko
  • S. G. Chefranov
Article

Abstract

It is shown that the core of a swirled helical flow can be described using a novel exact nonstationary solution of the hydrodynamic equations for a viscous incompressible fluid, which generalizes the rigid-body asymptotics for the Burgers and Sullivan vortices in the form of rigid-body rotation with a finite helicity. An estimate of the pressure fluctuations corresponding to this nonstationary vortex regime, which is proportional to the frequency of the swirled-jet core rotation as a rigid body and also depends on the parameters of the initial velocity field structure, is obtained. It is noted that this frequency may correspond to the frequency observed in the pressure fluctuation spectrum, which is almost proportional to the swirled flow rate in vortex acoustic emitters.

Keywords

swirled jet helicity rigid-body rotation periodic pressure fluctuations exact solution of the hydrodynamic equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. S. Chefranov and S. G. Chefranov, “Extrema of the kinetic energy and its dissipation rate in the hydromechanics of swirled flows,” Dokl. Ros. Akad. Nauk, 393, No.5, 624–628 (2003).MathSciNetGoogle Scholar
  2. 2.
    S. G. Chefranov, “On a scale-invariant similarity criterion for swirled flows in the laboratory simulation of tornado-like vortices,” Izv. Ros. Akad. Nauk, Fizika Atmosfery i Okeana, 39, No.6, 760–765 (2003).MathSciNetGoogle Scholar
  3. 3.
    S. G. Chefranov, “Generation of helicity in homogeneously corkscrew-like vortex flows,” Zh. Exper. Teor. Fiz., 126, No.5(11), 1133–1145 (2004).Google Scholar
  4. 4.
    G. I. Kiknadze, V. G. Oleinikov, A. Yu. Gorodkov, I. A. Gachechiladze, N. B. Dobrova, Ch. Baquey, and J.-L. Barat, “Flow pattern in the left ventricle of the heart on the basis of exact solutions of the nonstationary hydrodynamic equations and morphometric studies,” Dokl. Ros. Akad. Nauk, 351, No.1, 119–122 (1996).Google Scholar
  5. 5.
    A. Gorodkov, N. B. Dobrova, J.-Ph. Dubernard, G. I. Kiknadze, J. L. Barat, and Ch. Baquey, “Anatomical structures determining blood flow in the heart left ventricle,” J. Material Sci. Materials Med., 7, 153–160 (1996).Google Scholar
  6. 6.
    A. Yu. Gorodkov, Quantitative Analysis of the Structural Organization of the Pulsatile Blood Flow in the Left Ventricle of the Heart and the Aorta [in Russian], Thesis for the Degree of Doctor of Biological Science, Moscow State University, Moscow (2004).Google Scholar
  7. 7.
    B. A. Vonnequt, “A vortex whistle,” J. Acoust. Soc. Amer., 26, No.1, 18–20 (1954).Google Scholar
  8. 8.
    R. C. Chanand, “Experiments concerning the vortex whistle,” J. Acoust. Soc. Amer., 35, No.3, 953–960 (1963).Google Scholar
  9. 9.
    Yu. A. Knysh and S. V. Lukachev, “Experimental investigation of a vortex sound generator,” Akust. Zh., 23, No.5, 766–782 (1977).Google Scholar
  10. 10.
    D. G. Akhmetov, V. V. Nikulin, and V. M. Petrov, “Experimental study of self-oscillations developing in a swirling-jet flow,” Fluid Dynamics, 39, No.3, 406–413 (2004).CrossRefGoogle Scholar
  11. 11.
    A. Sh. Kiyasbeili and M. E. Perelshtein, Vortex Flowmeters [in Russian], Mashinostroyenie, Moscow (1974).Google Scholar
  12. 12.
    V. B. Kurzin, “Low-frequency natural oscillations in the blading of hydraulic turbines,” Zh. Prikl. Mekh. Tekhn. Fiz., No. 2, 96–105 (1993).Google Scholar
  13. 13.
    A. S. Polyanskii and L. I. Skurin, “On finding the frequency of the sound generated by a vortex chamber,” Akust. Zh., 39, No.6, 1117–1122 (1993).Google Scholar
  14. 14.
    M. A. Gol'dshtik, “Variational model of a turbulent rotating flow,” Fluid Dynamics, 20, No.3, 353–362 (1985).CrossRefMATHGoogle Scholar
  15. 15.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series [in Russian], Nauka, Moscow (1981).Google Scholar
  16. 16.
    G. I. Kiknadze and Yu. K. Krasnov, “Evolution of tornado-like viscous fluid flows,” Dokl. Ros. Akad. Nauk, 290, No.6, 1315–1319 (1986).MathSciNetGoogle Scholar
  17. 17.
    S. G. Chefranov, “Dissipative-centrifugal instability and cyclonic-anticyclonic asymmetry of Rossby vortices,” Letters to Zh. Exp. Teor. Fiz., 73, 312–315 (2001).Google Scholar
  18. 18.
    G. K. Batchelor, An Introduction to Fluid Dynamics, University Press, Cambridge (1970).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. N. Blazhko
  • S. G. Chefranov

There are no affiliations available

Personalised recommendations