Fluid Dynamics

, Volume 40, Issue 3, pp 462–473 | Cite as

Self-Localization of the Energy Supply During Pulse Ionization of a Supersonic Flow

  • I. A. Znamenskaya
  • I. E. Ivanov
  • I. A. Kryukov
  • T. A. Kuli-Zade


The pulse ionization of the time-dependent quasi-two-dimensional flow developed during diffraction of a shock wave on a wedge is investigated experimentally. The redistribution of the pulse volume discharge plasma subjected to preionization by ultraviolet radiation from plasma sheets is investigated when the discharge is initiated in different stages of the time-dependent gas dynamic flow. Images of the plasma flow are compared with the corresponding fields of the gas dynamic flow parameters. It is shown that the pulse discharge plasma flows can be controlled due to the phenomenon of self-localization in a given flow zone of known shape. The local energy supply to the gasdynamic flow is simulated numerically using the experimental data.


self-localization of energy supply shock wave diffraction two-dimensional flow pulse discharge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. G. Chernyi, “The impact of electromagnetic energy addition to air near the flying body on its aerodynamic characteristics (Russian contribution),” in: AAIA 2nd Weakly Ionized Gases Workshop, Norfolk, Virginia, USA, (1998), P. 1–31.Google Scholar
  2. 2.
    P. Yu. Georgievskii and V. A. Levin, “Control of the flow past bodies using localized energy addition to the supersonic oncoming flow,” Fluid Dynamics, 38, No.5, 794 (2003).CrossRefGoogle Scholar
  3. 3.
    P. K. Tret’yakov, A. F. Garanin, G. N. Grachev et al., “Control of the supersonic flow past bodies using a powerful optical pulse-periodic discharge,” Dokl. Ross. Akad. Nauk, 351, 339 (1996).Google Scholar
  4. 4.
    V. P. Zamuraev, A. P. Kalinina, and A. F. Latypov, “Evaluation of the ramjet propulsion at an energy pulse supply,” in: Proc. of XI Int. Conf. Methods Aerophys. Research. Novosibirsk, Pt. 1 (2002), P. 227–231.Google Scholar
  5. 5.
    I. A. Znamenskaya and A. E. Lutsky, “Localization of pulse discharge plasma in gas flow,” in: Proc. of 4th Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications. Moscow (2002), P. 129–134.Google Scholar
  6. 6.
    V. N. Tischenko, G. N. Grachev, A. L. Smirnov, V. I. Zapryagaev, and A. V. Sobolev, “Plasma jet and shock waves initiated by an optical pulsating discharge. The experiment,” in: Proc. of 4th Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications. Moscow (2002), P. 60–67.Google Scholar
  7. 7.
    P. K. Tret’yakov, G. N. Grachev, A. I. Ivanchenko, V. L. Krainev, A. G. Ponomarenko, and V. N. Tischenko, “Stabilization of an optical discharge in a supersonic argon flow,” Dokl. Ross. Akad. Nauk, 336, 466 (1994).Google Scholar
  8. 8.
    S. I. Andreev, I. A. Znamenskaya, and I. V. Stepanets, “Shock layer in air excited by a volume discharge,” Khim. Fiz., 12, 392 (1993).Google Scholar
  9. 9.
    I. A. Znamenskaya, “Method of pulse energy input into gas,” in: N. A. Anfimov (Ed.) ICEFM III, Korolev (1997), P. 251–254.Google Scholar
  10. 10.
    I. A. Znamenskaya, I. E. Ivanov, I. A. Kryukov, and T. A. Kuli-Zade, “Pulse volume discharge with preionization in a two-dimensional gasdynamic flow,” Zh. Eksper. Teor. Fiz., 122, No.6(12), 1199 (2002).Google Scholar
  11. 11.
    P. Yu. Georgievskii and V. A. Levin, “Unsteady effects for a supersonic flow past a pulsing energy source of high power,” in: Proc. of XI Int. Conf. Methods Aerophys. Research. Novosibirsk, Pt. 2 (1998), P. 58–64.Google Scholar
  12. 12.
    N. V. Karlov, G. P. Kuz’min, A. M. Prokhorov, “Gas-discharge lasers with plasma electrodes,” Izv. Akad. Nauk SSSR. Ser. Fiz., 48, 1430 (1984).Google Scholar
  13. 13.
    V. Yu. Baranov, V. M. Borisov, and Yu. Yu. Stepanov, Electric-Discharge Excimer Lasers [in Russian], Energoatomizdat, Moscow (1988).Google Scholar
  14. 14.
    N. A. Popov, “Formation and development of a leader channel in air,” Fizika Plasmy, 29, 754 (2003).Google Scholar
  15. 15.
    I. E. Ivanov and I. A. Kryukov, “Higher-order quasi-monotonic method for calculating internal and jet inviscid gas flows,” Mat. Modelirovanie, 8, No.6, 47 (1996).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. A. Znamenskaya
  • I. E. Ivanov
  • I. A. Kryukov
  • T. A. Kuli-Zade

There are no affiliations available

Personalised recommendations