Advertisement

Fluid Dynamics

, Volume 40, Issue 2, pp 193–201 | Cite as

Effect of Rotation on the Stability of Advective Flow in a Horizontal Fluid Layer at a Small Prandtl Number

  • K. G. Schwarz
Article

Abstract

The stability of advective flow in a rotating infinite horizontal fluid layer with rigid bound-aries is investigated for a small Prandtl number Pr = 0.1 and various Taylor numbers for perturbations of the hydrodynamic type. Within the framework of the linear theory of stability, neutral curves describing the dependence of the critical Grashof number on the wave number are obtained. The behavior of finite-amplitude perturbations beyond the stability threshold is studied numerically.

Keywords

advective flow rotation stability normal perturbations neutral curve finite-amplitude perturbations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. N. Aristov and P. G. Frik, Dynamics of large-scale flows in thin fluid layers [preprint, in Russian], Institute of Continuum Mechanics, Ural Branch of the Academy of Sciences of the USSR, Sverdlovsk (1987).Google Scholar
  2. 2.
    J. Pedloski, Geophysical Fluid Dynamics, Springer Verlag, Berlin, etc. (1982).Google Scholar
  3. 3.
    S. N. Aristov and K. G. Shvartz, “Stability of advective flow in a rotating horizontal fluid layer, ” Fluid Dynamics, 34, No.4, 457–464 (1999).Google Scholar
  4. 4.
    K. G. Schwarz, “Finite-amplitude spatial perturbations of advective flow in a rotating horizontal fluid layer,” Vychisl. Tekhnologii, 6, Special Issue, Pt 2 (Transactions of the International Conference RDAMM-2001, 702–707 (2001).Google Scholar
  5. 5.
    E. L. Tarunin and K. G. Schwarz, “Investigation of the linear stability of advective flow by the grid method,” Vychisl. Tekhnologii, 6, No.6, 108–117 (2001).Google Scholar
  6. 6.
    K. G. Schwarz, “Instability of advective flow in rotating horizontal layer of liquid,” Selected Papers of the International Conference ‘Fluxes and Structures in Fluids’, St. Petersburg, Russia, June 23–26, 2003, IPM RAS, Moscow, 164–171 (2004).Google Scholar
  7. 7.
    G. Z. Gershuni, E. M. Zhukhovitsky, and V. M. Myznikov, “Stability of plane-parallel convective flow in a horizontal layer,” Prikl. Mat. Tekhn. Fiz., No. 1, 95–100 (1974).Google Scholar
  8. 8.
    G. Z. Gershuni, E. M. Zhukhovitsky, and V. M. Myznikov, “Stability of plane-parallel convective fluid flow in a horizontal layer with respect to spatial perturbations,” Prikl. Mat. Tekhn. Fiz., No. 5, 145–147 (1974).Google Scholar
  9. 9.
    G. Z. Gershuni, P. Laure, V. M. Myznikov, B. Roux, and E. M. Zhukhovitsky, “On the stability of plane-parallel advective flows in long horizontal layers,” Microgravity Q., 2, No. 3, 141–151 (1992).Google Scholar
  10. 10.
    V. M. Myznikov, “Finite-amplitude convective fluid flows in a horizontal layer with a longitudinal temperature gradient,” Mathematical Models of Fluid Flows: Transactions of VI Soviet-Union Seminar on Numerical Methods in Viscous Fluid Mechanics [in Russian], Institute of Theoretical and Applied Mechanics, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, 176–186 (1978).Google Scholar
  11. 11.
    G. Z. Gershuni and E. M. Zhukhovitsky, Convective Stability of an Incompressible Fluid [in Russian], Nauka, Moscow (1972).Google Scholar
  12. 12.
    E. L. Tarunin, Numerical Experiment in Problems of Free Convection [in Russian], Irkutsk University Press, Irkutsk (1990).Google Scholar
  13. 13.
    B. P. Demidovich, I. A. Maron, and E. Z. Shuvalova, Numerical Methods of Analysis: Approximation of Functions and Differential and Integral Equations [in Russian], Nauka, Moscow (1967).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • K. G. Schwarz

There are no affiliations available

Personalised recommendations