Advertisement

Fluid Dynamics

, Volume 39, Issue 5, pp 718–728 | Cite as

Critical Reynolds number in plasma flows on a stabilized plasmatron section

  • O. A. Sinkevich
  • S. E. Chikunov
Article

Abstract

A technique for determining the criterion of transition from the laminar to the turbulent flow regime on a stabilized plasmatron channel section is proposed. The technique uses experimental data and the methods of numerical simulation of plasma flows. A criterial generalization of the experimental data which for the first time makes it possible to establish the boundary of transition from the laminar to the turbulent flow regime on a stabilized plasmatron channel section is proposed. The experimental results are in good agreement with the theoretical dependences derived in the study. A curve (analog of the neutral curve) separating the domains of existence of laminar and turbulent plasma flows in a cylindrical channel is constructed in the space of the plasmatron working parameters.

Keywords

plasmatron electric arc critical Reynolds number neutral curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Monin, A. S., Yaglom, A. M. 1965Statistical HydromechanicsNaukaMoscow[in Russian]Google Scholar
  2. 2.
    P. W. Runstadler, “Laminar and turbulent flow of an argon arc plasma,” in: Harvard, Univ. Eng. Sci. Lab. Techn. Rep., No. 22 (1965).Google Scholar
  3. 3.
    Frind, G., Damsky, B. L. 1970Electric arcs in turbulent flowsAerospace Research Laboratories, Office of Aerospace Research, US Air Force, Wright-Patterson Air Force BaseOhioGoogle Scholar
  4. 4.
    Lukens, L. A., Incropera, F. P. 1972Electric field intensity and wall heat transfer measurements for the heating region of an atmospheric cascade arcIntern. J. Heat Mass Transfer8935Google Scholar
  5. 5.
    Pakhomov, E. P., Yartsev, I. M. 1977Experimental determination of the length and characteristics of the initial section of laminar flow in a stabilized electric arcTeplofizika Vysokikh Temperatur15949Google Scholar
  6. 6.
    Yu. S. Levitan “Computational and theoretical investigation of a d.c. electric arc in a turbulent flow,” Izv. SO AN SSSR. Ser. Tekhn. Nauk, No. 2, 117 (1984)Google Scholar
  7. 7.
    Artemov, V. I., Levitan, Yu. S., Sinkevich, O. A. 1994Instabilities and Turbulence in Low-Temperature PlasmaMoscow Energy Institute PressMoscow[in Russian]Google Scholar
  8. 8.
    Zhukov, M. F., Koroteev, A. S., Uryukov, B. A. 1975Applied Dynamics of Thermal PlasmaNaukaNovosibirsk[in Russian]Google Scholar
  9. 9.
    Patankar, S. 1984Numerical Heat Transfer and Fluid FlowMcGraw-HillNew YorkGoogle Scholar
  10. 10.
    Evan, D. L., Tankin, R. S. 1967Measurements of emission and absorption of radiation by an argon plasmaPhys. Fluids101137Google Scholar
  11. 11.
    Zhainakov, A., Lelevkin, B. M., Mechev, V. S., Semenov, V. F., Urusov, P. M. 1990Electric Arc: a Low-Temperature Plasma GeneratorIlimBishkek[in Russian]Google Scholar
  12. 12.
    Devoto, R. S. 1973Transport coefficients in ionized argonPhys. Fluids16616Google Scholar
  13. 13.
    Katsnel’son, S. S., Koval’skaya, G. A. 1985Thermophysical and Optic Properties of Argon PlasmaNaukaNovosibirsk[in Russian]Google Scholar
  14. 14.
    Dresvin, S. V. eds. 1972Physics and Technology of Low-Temperature PlasmaAtomizdatMoscow[in Russian]Google Scholar
  15. 15.
    Sinkevich, O. A. 1985Nonlinear theory of helical instability of the electric arc in an external magnetic fieldDokl. Akad. Nauk SSSR28099Google Scholar
  16. 16.
    Asinovskii, E. I., Afanas’ev, A. A., Pakhomov, E. P. 1976Spiral form of the arc column: conditions and existence domainDokl. Akad. Nauk SSSR231326Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • O. A. Sinkevich
  • S. E. Chikunov

There are no affiliations available

Personalised recommendations