A hierarchical facility layout planning approach for large and complex hospitals

  • Stefan Helber
  • Daniel Böhme
  • Farid Oucherif
  • Svenja Lagershausen
  • Steffen Kasper


The transportation processes for patients, personnel, and material in large and complex maximum-care hospitals with many departments can consume significant resources and thus induce substantial logistics costs. These costs are largely determined by the allocation of the different departments and wards in possibly multiple connected hospital buildings. We develop a hierarchical layout planning approach based on an analysis of organizational and operational data from the Hannover Medical School, a large and complex university hospital in Hannover, Germany. The purpose of this approach is to propose locations for departments and wards for a given system of buildings such that the consumption of resources due to those transportation processes is minimized. We apply the approach to this real-world organizational and operational dataset as well as to a fictitious hospital building and analyze the algorithmic behavior and resulting layout.


Hospital layout planning Quadratic assignment problem  Fix-and-optimize heuristic 


  1. Adams WP, Sherali HD (1986) A tight linearization and an algorithm for zero–one quadratic programming problems. Manag Sci 32(10):1274–1290CrossRefMathSciNetMATHGoogle Scholar
  2. Armour GC, Buffa ES (1963) A heuristic algorithm and simulation approach to relative location of facilities. Manag Sci 9(2):294–309CrossRefGoogle Scholar
  3. Barbosa-Póvoa AP, Mateus R, Novais AQ (2001) Optimal two-dimensional layout of industrial facilities. Int J Prod Res 39(12):2567–2593CrossRefMATHGoogle Scholar
  4. Barbosa-Póvoa AP, Mateus R, Novais AQ (2002) Optimal 3D layout of industrial facilities. Int J Prod Res 40(7):1669–1698CrossRefGoogle Scholar
  5. Beraldi P, Bruni ME (2009) A probabilistic model applied to emergency service vehicle location. Eur J Oper Res 196(1):323–331CrossRefMATHGoogle Scholar
  6. Böhme D (2013) Entwicklung von Entscheidungsmodellen für die innerbetriebliche Standortplanung von Akutkrankenhäusern. Gottfried Wilhelm Leibniz Universität Hannover, Institut für Produktionswirtschaft, MasterarbeitGoogle Scholar
  7. Bozer YA, Meller RD (1997) A reexamination of the distance-based facility layout problem. IIE Trans 29(7):549–560Google Scholar
  8. Bozer YA, Meller RD, Erlebacher S (1994) An improvement-type layout algorithm for single and multiple-floor facilities. Manag Sci 40(7):918–932CrossRefMATHGoogle Scholar
  9. Burkard RE, Karisch S, Rendl F (1991) QAPLIB-A quadratic assignment problem library. Eur J Oper Res 55(1):115–119CrossRefMATHGoogle Scholar
  10. Burkard RE, Offermann J (1977) Entwurf von Schreibmaschinentastaturen mittels quadratischer Zuordnungsprobleme. Z Oper Res 21(4):121–132Google Scholar
  11. Butler TW, Karwan KR, Sweigart JR, Reeves GR (1992) An integrative model-based approach to hospital layout. IIE Trans 24(2):144–152CrossRefGoogle Scholar
  12. Drira A, Pierreval H, Hajri-Gabouj S (2007) Facility layout problems: a survey. Ann Rev Control 31(2):255–267CrossRefGoogle Scholar
  13. Elshafei AN (1977) Hospital layout as a quadratic assignment problem. Opera Res Q 28(1):167–179CrossRefMATHGoogle Scholar
  14. Foulds LR (1983) Techniques for facilities layout: deciding which pairs of activities should be adjacent. Manag Sci 29(12):1414–1426CrossRefMATHGoogle Scholar
  15. Garey MR, Johnson DS (2009) Computers and intractability: a guide to the theory of NP-completeness (27. print Aufl.)., A series of books in the mathematical sciencesFreeman, New York, NYGoogle Scholar
  16. Glover F, Woolsey E (1974) Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper Res 22(1):180–182CrossRefMATHGoogle Scholar
  17. Hahn P, MacGregor Smith J, Zhu Y-R (2010) The multi-story space assignment problem. Ann Oper Res 179(1):77–103CrossRefMathSciNetMATHGoogle Scholar
  18. Hahn PM, Krarup J (2001) A hospital facility layout problem finally solved. J Intell Manuf 12:487–496CrossRefGoogle Scholar
  19. Hahn PM, Zhu Y-R, Guignard M, Hightower WL, Saltzman MJ (2012) A level-3 reformulation-linearization technique-based bound for the quadratic assignment problem. INFORMS J Comput 24(2):202–209CrossRefMathSciNetGoogle Scholar
  20. Hassan MMD (1994) Machine layout problem in modern manufacturing facilities. Int J Prod Res 32(11):2559–2584CrossRefMATHGoogle Scholar
  21. Helber S, Sahling F (2010) A fix-and-optimize approach for the multi-level capacitated lot sizing problem. Int J Prod Econ 123(2):247–256CrossRefMathSciNetGoogle Scholar
  22. Heragu SS, Kusiak A (1991) Efficient models for the facility layout problem. Eur J Oper Res 53(1):1–13CrossRefMATHGoogle Scholar
  23. Hillier FS, Connors MM (1966) Quadratic assignment problem algorithms and the location of indivisible facilities. Manag Sci 13(1):42–57CrossRefGoogle Scholar
  24. Koopmans TC, Beckmann M (1957) Assignment problems and the location of economic activities. Econometrica 25(1):53–76CrossRefMathSciNetMATHGoogle Scholar
  25. Kusiak A, Heragu SS (1987) The facility layout problem. Eur J Oper Res 29(3):229–251CrossRefMathSciNetMATHGoogle Scholar
  26. Levary RR, Kalchik S (1985) Facilities layout: a survey of solution procedures. Comput Ind Eng 9(2):141–148CrossRefGoogle Scholar
  27. Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T (2007) A survey for the quadratic assignment problem. Eur J Oper Res 176(2):657–690CrossRefMATHGoogle Scholar
  28. Oral M, Kettani O (1992) A linearization procedure for quadratic and cubic mixed-integer problems. Oper Res 40:109–116CrossRefMathSciNetGoogle Scholar
  29. Oucherif F (2012) Analyse und Optimierung der Layoutplanung von Krankenhäusern aus Sicht der Transportlogistik durch Methoden des Operations Research. Gottfried Wilhelm Leibniz Universität Hannover, Institut für Produktionswirtschaft, MasterarbeitGoogle Scholar
  30. Sahling F (2010) Mehrstufige Losgrößenplanung bei Kapazitätsrestriktionen. Gabler Research: Produktion und Logistik. Gabler, WiesbadenCrossRefGoogle Scholar
  31. Steinberg L (1961) The backboard wiring problem: a placement algorithm. SIAM Rev 3(1):37–50CrossRefMathSciNetMATHGoogle Scholar
  32. Vos L, Groothuis S, van Merode GG (2007) Evaluating hospital design from an operations management perspective. Health Care Manag Sci 10(4):357–364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stefan Helber
    • 1
  • Daniel Böhme
    • 1
  • Farid Oucherif
    • 1
  • Svenja Lagershausen
    • 1
  • Steffen Kasper
    • 1
  1. 1.Department of Production ManagementLeibniz University HannoverHannoverGermany

Personalised recommendations