Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus)

Abstract

Scatophagus argus is a new emerging aquaculture fish in East and Southeast Asia. To date, research on reproductive development and regulation in S. argus is lacking. Additionally, genetic and genomic information about reproduction, such as gonadal transcriptome data, is also lacking. Herein, we report the first gonadal transcriptomes of S. argus and identify genes potentially involved in reproduction and gonadal development. A total of 136,561 unigenes were obtained by sequencing of testes (n = 3) and ovaries (n = 3) at stage III. Genes upregulated in males and females known to be involved in gonadal development and gametogenesis were identified, including male-biased dmrt1, amh, gsdf, wt1a, sox9b, and nanos2, and female-biased foxl2, gdf9, bmp15, sox3, zar1, and figla. Serum estradiol-17β and 11-ketotestosterone levels were biased in female and male fish, respectively. Sexual dimorphism of serum steroid hormone levels were interpreted after expression analysis of 20 steroidogenesis-related genes, including cyp19a1a and cyp11b2. This gonadal transcript dataset will help investigate functional genes related to reproduction in S. argus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bellaiche J, Lareyre JJ, Cauty C, Yano A, Allemand I, Le Gac F (2014) Spermatogonial stem cell quest: nanos2, marker of a subpopulation of undifferentiated A spermatogonia in trout testis. Biol Reprod 90(4):79–71. https://doi.org/10.1095/biolreprod.113.116392

    CAS  Article  PubMed  Google Scholar 

  3. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, Le Bourhis D, Daniel N, Richard C, Cotinot C, Ghyselinck NB, Pailhoux E (2014) FOXL2 is a female sex-determining gene in the goat. Curr Biol 24(4):404–408. https://doi.org/10.1016/j.cub.2013.12.039

    CAS  Article  PubMed  Google Scholar 

  4. Cai ZP, Wang Y, Hu JW, Zhang JB, Lin YG (2010) Reproductive biology of Scatophagus argus and artificial induction of spawning. J Trop Oceanogr 29(5):180–185

    Google Scholar 

  5. Cavaco JEB, Bogerd J, Goos H, Schulz RW (2001) Testosterone inhibits 11-ketotestosterone-induced spermatogenesis in African catfish (Clarias gariepinus). Biol Reprod 65(6):1807–1812

    CAS  Article  Google Scholar 

  6. Chandler JC, Fitzgibbon QP, Smith G, Elizur A, Ventura T (2017) Y-linked iDmrt1 paralogue (iDMY) in the Eastern spiny lobster, Sagmariasus verreauxi: the first invertebrate sex-linked Dmrt. Dev Biol 430(2):337–345. https://doi.org/10.1016/j.ydbio.2017.08.031

    CAS  Article  PubMed  Google Scholar 

  7. Chen J, He M, Yan B, Zhang J, Jin S, Liu L (2015) Molecular characterization of dax1 and SF-1 and their expression analysis during sex reversal in spotted scat, Scatophagus argus. J World Aquacult Soc 46(1):1–19. https://doi.org/10.1111/jwas.12165

    CAS  Article  Google Scholar 

  8. Chen L, Jiang X, Feng H, Shi H, Sun L, Tao W, Xie Q, Wang D (2016) Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J Endocrinol 228(3):205–218. https://doi.org/10.1530/JOE-15-0432

    CAS  Article  PubMed  Google Scholar 

  9. Chen W, Liu L, Ge W (2017) Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-Müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio. Biol Reprod 96(2):401–413. https://doi.org/10.1095/biolreprod.116.144964

    Article  PubMed  Google Scholar 

  10. Cui D, Liu ZW, Liu NX, Zhang YY, Zhang JB (2013) Histological study on the gonadal development of Scatophagus argus. J Fish China 37(5):696–704

    Article  Google Scholar 

  11. Cui XF, Zhao Y, Chen HP, Deng SP, Jiang DN, Wu TL, Zhu CH, Li GL (2017) Cloning, expression and functional characterization on vitellogenesis of estrogen receptors in Scatophagus argus. Gen Comp Endocrinol 246:37–45. https://doi.org/10.1016/j.ygcen.2017.03.002

    CAS  Article  PubMed  Google Scholar 

  12. Deng SP, Wu B, Zhu CH, Li GL (2014) Molecular cloning and dimorphic expression of growth hormone (gh) in female and male spotted scat Scatophagus argus. Fish Sci 80(4):715–723. https://doi.org/10.1007/s12562-014-0763-5

    CAS  Article  Google Scholar 

  13. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 208(3–4):191–364. https://doi.org/10.1016/S0044-8486(02)00057-1

    CAS  Article  Google Scholar 

  14. Dranow DB, Hu K, Bird AM, Lawry ST, Adams MT, Sanchez A, Amatruda JF, Draper BW (2016) Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS Genet 12(9):e1006323. https://doi.org/10.1371/journal.pgen.1006323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Du X, Wang B, Liu X, Liu X, He Y, Zhang Q, Wang X (2017) Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus. Gene. 637:203–210. https://doi.org/10.1016/j.gene.2017.09.055

    CAS  Article  PubMed  Google Scholar 

  16. Fakriadis I, Lisi F, Sigelaki I, Papadaki M, Mylonas CC (2018) Spawning kinetics and egg/larval quality of greater amberjack (Seriola dumerili) in response to multiple GnRHa injections or implants. Gen Comp Endocrinol 279:78–87. https://doi.org/10.1016/j.ygcen.2018.12.007

    CAS  Article  PubMed  Google Scholar 

  17. Gao F, Maiti S, Alam N, Zhang Z, Deng JM, Behringer RR, Lécureuil C, Guillou F, Huff V (2006) The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci 103(32):11987–11992. https://doi.org/10.1073/pnas.0600994103

    CAS  Article  PubMed  Google Scholar 

  18. Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8(6):469–477. https://doi.org/10.1038/nmeth.1613

    CAS  Article  PubMed  Google Scholar 

  19. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Guiguen Y, Fostier A, Piferrer F, Chang CF (2010) Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165(3):352–366. https://doi.org/10.1016/j.ygcen.2009.03.002

    CAS  Article  PubMed  Google Scholar 

  21. Gupta S (2016) An overview on morphology, biology, and culture of spotted scat Scatophagus argus (Linnaeus 1766). Rev Fish Sci Aquac 24(2):203–212. https://doi.org/10.1080/23308249.2015.1119800

    Article  Google Scholar 

  22. Hao L, Wei X, Zhu J, Shi J, Liu J, Gu H, Tsuge T, Qu LJ (2017) SNAIL1 is essential for female gametogenesis in Arabidopsis thaliana. J Integr Plant Biol 59(9):629–641. https://doi.org/10.1111/jipb.12572

    CAS  Article  PubMed  Google Scholar 

  23. Herpin A, Schartl M (2011) Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS J 278(7):1010–1019. https://doi.org/10.1111/j.1742-4658.2011.08030.x

    CAS  Article  PubMed  Google Scholar 

  24. Hirst CE, Major AT, Ayers KL, Brown RJ, Mariette M, Sackton TB, Smith CA (2017) Sex reversal and comparative data undermine the W chromosome and support Z-linked DMRT1 as the regulator of gonadal sex differentiation in birds. Endocrinology. 158(9):2970–2987. https://doi.org/10.1210/en.2017-00316

    Article  PubMed  Google Scholar 

  25. Hong Q, Li C, Ying R, Lin H, Li J, Zhao Y, Cheng H, Zhou R (2019) Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish. Protein Cell 10:1–18. https://doi.org/10.1007/s13238-018-0603-y

    CAS  Article  Google Scholar 

  26. Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nagahama Y (2008) Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78(2):333–341

    CAS  Article  Google Scholar 

  27. Imai T, Saino K, Matsuda M (2015) Mutation of gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem Biophys Res Commun 467(1):109–114. https://doi.org/10.1016/j.bbrc.2015.09.112

    CAS  Article  PubMed  Google Scholar 

  28. Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF (2018) Gonadal development and expression of sex-specific genes during sex differentiation in the Japanese eel. Gen Comp Endocrinol 257:74–85. https://doi.org/10.1016/j.ygcen.2017.07.031

    CAS  Article  PubMed  Google Scholar 

  29. Jiang DN, Yang HH, Li MH, Shi HJ, Zhang XB, Wang DS (2016) gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia. Mol Reprod Dev 83(6):497–508. https://doi.org/10.1002/mrd.22642

    CAS  Article  PubMed  Google Scholar 

  30. Jiang DN, Li JT, Tao YX, Chen HP, Deng SP, Zhu CH, Li GL (2017a) Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus. J Comp Physiol B 187(4):603–612. https://doi.org/10.1007/s00360-017-1062-0

    CAS  Article  PubMed  Google Scholar 

  31. Jiang DN, Chen JL, Fan Z, Tan DJ, Zhao JE, Shi HJ, Liu ZL, Tao WJ, Li MH, Wang DS (2017b) CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev Biol 428(1):63–73. https://doi.org/10.1016/j.ydbio.2017.05.017

    CAS  Article  PubMed  Google Scholar 

  32. Jiang DN, Mustapha UF, Shi HJ, Huang YQ, Si-Tu JX, Wang M, Deng SP, Chen HP, Tian CX, Zhun CH, Li GL (2019) Expression and transcriptional regulation of gsdf in spotted scat (Scatophagus argus). Comp Biochem Physiol B: Biochem Mol Biol 233:35–45

    CAS  Article  Google Scholar 

  33. Joshi S, Davies H, Sims LP, Levy SE, Dean J (2007) Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev Biol 7(1):67. https://doi.org/10.1186/1471-213X-7-67

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Klüver N, Kondo M, Herpin A, Mitani H, Schartl M (2005) Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev Genes Evol 215(6):297–305. https://doi.org/10.1007/s00427-005-0477-x

    CAS  Article  PubMed  Google Scholar 

  35. Klüver N, Pfennig F, Pala I, Storch K, Schlieder M, Froschauer A, Gutzeit HO, Schartl M (2007) Differential expression of anti-Müllerian hormone (amh) and anti-Müllerian hormone receptor type II (amhrII) in the teleost medaka. Dev Dyn 236(1):271–281. https://doi.org/10.1002/dvdy.20997

    CAS  Article  PubMed  Google Scholar 

  36. Koya Y, Soyano K, Yamamoto K, Obana H, Matsubara T (2002) Testicular development and serum profiles of steroid hormone levels in captive male Pacific herring Clupea pallasii during their first maturational cycle. Fish Sci 68(5):1099–1105

    CAS  Article  Google Scholar 

  37. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323. https://doi.org/10.1186/1471-2105-12-323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Li S, Liu Z, Hu P, Liang XM, Liu HF, Su ML, Zhang JB (2014a) SNP discovery using high-throughput 454 pyrosequencing and validation in the spotted scat, Scatophagus argus. Conserv Genet Resour 6(4):817–820. https://doi.org/10.1007/s12686-014-0255-z

    Article  Google Scholar 

  39. Li MH, Yang HH, Zhao JE, Fang LL, Shi HJ, Li MR, Sun YL, Zhang XB, Jiang DN, Zhou LY, Wang DS (2014b) Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics. 197(2):591–599. https://doi.org/10.1534/genetics.114.163667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Li GL, Zhang MZ, Deng SP, Chen HP, Zhu CH (2015) Effects of temperature and fish oil supplementation on ovarian development and foxl2 mRNA expression in spotted scat Scatophagus argus. J Fish Biol 86(1):248–260. https://doi.org/10.1111/jfb.12578

    CAS  Article  PubMed  Google Scholar 

  41. Lin Q, Mei J, Li ZH, Zhang X, Zhou L, Gui JF (2017) Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics. 207(3):1007–1022. https://doi.org/10.1534/genetics.117.300274

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Liu H, Mu X, Gui L, Su M, Li H, Zhang G, Liu Z, Zhang JB (2015) Characterization and gonadal expression of FOXL2 relative to Cyp19a genes in spotted scat Scatophagus argus. Gene. 561(1):6–14. https://doi.org/10.1016/j.gene.2014.12.060

    CAS  Article  PubMed  Google Scholar 

  43. Masuyama H, Yamada M, Kamei Y, Fujiwara-Ishikawa T, Todo T, Nagahama Y, Matsuda M (2012) Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosom Res 20(1):163–176. https://doi.org/10.1007/s10577-011-9264-x

    CAS  Article  Google Scholar 

  44. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature. 417(6888):559–563. https://doi.org/10.1038/nature751

    CAS  Article  PubMed  Google Scholar 

  45. Mei J, Gui JF (2015) Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci China Life Sci 58(2):124–136. https://doi.org/10.1007/s11427-014-4797-9

    CAS  Article  PubMed  Google Scholar 

  46. Miao L, Yuan Y, Cheng F, Fang J, Zhou F, Ma W, Jiang Y, Huang X, Wang Y, Shan L, Chen D (2017) Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish. Development. 144(1):128–138. https://doi.org/10.1242/dev.144642

    CAS  Article  PubMed  Google Scholar 

  47. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    CAS  Article  Google Scholar 

  48. Mu X, Su M, Gui L, Liang X, Zhang P, Hu P, Liu Z, Zhang JB (2015) Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus). Gen Comp Endocrinol 215:25–35. https://doi.org/10.1016/j.ygcen.2014.09.017

    CAS  Article  PubMed  Google Scholar 

  49. Mustapha UF, Jiang DN, Liang ZH, Gu HT, Yang W, Chen HP, Deng SP, Wu TL, Tian CX, Zhu CH, Li GL (2018) Male-specific Dmrt1 is a candidate sex determination gene in spotted scat (Scatophagus argus). Aquaculture. 495:351–358. https://doi.org/10.1016/j.aquaculture.2018.06.009

    CAS  Article  Google Scholar 

  50. Nakamoto M, Shibata Y, Ohno K, Usami T, Kamei Y, Taniguchi Y, Todo T, Sakamoto T, Young G, Swanson P, Naruse K (2018) Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty. Mol Cell Endocrinol 460:104–122. https://doi.org/10.1016/j.mce.2017.07.013

    CAS  Article  PubMed  Google Scholar 

  51. Nakamura S, Watakabe I, Nishimura T, Picard JY, Toyoda A, Taniguchi Y, di Clemente N, Tanaka M (2012a) Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka. Development. 139(13):2283–2287. https://doi.org/10.1242/dev.076307

    CAS  Article  PubMed  Google Scholar 

  52. Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, Tanaka M (2012b) Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One 7(1):e29982. https://doi.org/10.1371/journal.pone.0029982

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Naor Z (2009) Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 30(1):10–29. https://doi.org/10.1016/j.yfrne.2008.07.001

    CAS  Article  PubMed  Google Scholar 

  54. Paul-Prasanth B, Bhandari RK, Kobayashi T, Horiguchi R, Kobayashi Y, Nakamoto M, Shibata Y, Sakai F, Nakamura M, Nagahama Y (2013) Estrogen oversees the maintenance of the female genetic program in terminally differentiated gonochorists. Sci Rep 3:2862. https://doi.org/10.1038/srep02862

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Perner B, Englert C, Bollig F (2007) The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309(1):87–96. https://doi.org/10.1016/j.ydbio.2007.06.022

    CAS  Article  PubMed  Google Scholar 

  56. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 19(5):651–652. https://doi.org/10.1093/bioinformatics/btg034

    CAS  Article  PubMed  Google Scholar 

  57. Qin M, Zhang Z, Song W, Wong QWL, Chen W, Shirgaonkar N, Ge W (2018) Roles of Figla/figla in juvenile ovary development and follicle formation during zebrafish gonadogenesis. Endocrinology. 159(11):3699–3722. https://doi.org/10.1210/en.2018-00648

    Article  PubMed  Google Scholar 

  58. Qiu Y, Sun S, Charkraborty T, Wu L, Sun L, Wei J, Nagahama Y, Wang D, Zhou L (2015) Figla favors ovarian differentiation by antagonizing spermatogenesis in a teleosts, Nile tilapia (Oreochromis niloticus). PLoS One 10(4):e0123900. https://doi.org/10.1371/journal.pone.0123900

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Raghuveer K, Senthilkumaran B, Sudhakumari CC, Sridevi P, Rajakumar A, Singh R, Murugananthkumar R, Majumdar KC (2011) Dimorphic expression of various transcription factor and steroidogenic enzyme genes during gonadal ontogeny in the air-breathing catfish, Clarias gariepinus. Sex Dev 5(4):213–223. https://doi.org/10.1159/000328823

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Rajpert-De Meyts E, Jørgensen N, Græm N, Müller J, Cate RL, Skakkebæk NE (1999) Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab 84(10):3836–3844. https://doi.org/10.1210/jcem.84.10.6047

    Article  PubMed  Google Scholar 

  61. Roy A, Basak R, Rai U (2017) De novo sequencing and comparative analysis of testicular transcriptome from different reproductive phases in freshwater spotted snakehead Channa punctatus. PLoS One 12(3):e0173178

    Article  Google Scholar 

  62. Sada A, Suzuki A, Suzuki H, Saga Y (2009) The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science. 325(5946):1394–1398. https://doi.org/10.1126/science.1172645

    CAS  Article  PubMed  Google Scholar 

  63. Sawatari E, Shikina S, Takeuchi T, Yoshizaki G (2007) A novel transforming growth factor-β superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301(1):266–275. https://doi.org/10.1016/j.ydbio.2006.10.001

    CAS  Article  PubMed  Google Scholar 

  64. Shi HJ, Gao T, Liu ZL, Sun LN, Jiang XL, Chen L, Wang DS (2017) Blockage of androgen and administration of estrogen induce transdifferentiation of testis into ovary. J Endocrinol 233(1):65–80. https://doi.org/10.1530/JOE-16-0551

    CAS  Article  PubMed  Google Scholar 

  65. Shibata Y, Paul-Prasanth B, Suzuki A, Usami T, Nakamoto M, Matsuda M, Nagahama Y (2010) Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr Patterns 10(6):283–289. https://doi.org/10.1016/j.gep.2010.06.005

    CAS  Article  PubMed  Google Scholar 

  66. Silva BDM, Castro EA, Souza CJH, Paiva SR, Sartori R, Franco MM, Azevedo HC, Silva TASN, Vieira AMC, Neves JP, Melo EDO (2011) A new polymorphism in the growth and differentiation factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim Genet 42(1):89–92. https://doi.org/10.1111/j.1365-2052.2010.02078.x

    CAS  Article  PubMed  Google Scholar 

  67. Sivan G, Radhakrishnan CK (2011) Food, feeding habits and biochemical composition of Scatophagus argus. Turk J Fish Aquat Sci 11(4):603–608. https://doi.org/10.4194/1303-2712-v11-4-14

    Article  Google Scholar 

  68. Stocco DM (2000) The role of the StAR protein in steroidogenesis: challenges for the future. J Endocrinol 164(3):247–253. https://doi.org/10.1677/joe.0.1640247

    CAS  Article  PubMed  Google Scholar 

  69. Su L, Zhou F, Ding Z, Gao Z, Wen J, Wei W, Wang Q, Wang W, Liu H (2015) Transcriptional variants of Dmrt1 and expression of four Dmrt genes in the blunt snout bream, Megalobrama amblycephala. Gene. 573(2):205–215. https://doi.org/10.1016/j.gene.2015.07.044

    CAS  Article  PubMed  Google Scholar 

  70. Su M, Mu X, Gui L, Zhang P, Zhou J, Ma J, Zhang J (2016) Dopamine regulates renal osmoregulation during hyposaline stress via DRD1 in the spotted scat (Scatophagus argus). Sci Rep 6:37535. https://doi.org/10.1038/srep37535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Sun F, Liu S, Gao X, Jiang Y, Perera D, Wang X, Li C, Sun L, Zhang J, Kaltenboeck L, Dunham R (2013) Male-biased genes in catfish as revealed by RNA-seq analysis of the testis transcriptome. PLoS One 8(7):e68452. https://doi.org/10.1371/journal.pone.0068452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Sun LN, Jiang XL, Xie QP, Yuan J, Huang BF, Tao WJ, Zhou LY, Nagahama Y, Wang DS (2014) Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology. 155(4):1476–1488. https://doi.org/10.1210/en.2013-1959

    CAS  Article  PubMed  Google Scholar 

  73. Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, Rogers N, Knower K, Rowley L, Eyre H, Rizzoti K (2011) Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121(1):328–341. https://doi.org/10.1172/JCI42580

    CAS  Article  PubMed  Google Scholar 

  74. Swanson P, Dickey JT, Campbell B (2003) Biochemistry and physiology of fish gonadotropins. Fish Physiol Biochem 28(1–4):53–59. https://doi.org/10.1023/B:FISH.0000030476.73360.07

    CAS  Article  Google Scholar 

  75. Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin T, Kohara Y, Kuroki Y, Toyoda A, Fujiyama A, Hamaguchi S (2014) Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 5:4157. https://doi.org/10.1038/ncomms5157

    CAS  Article  PubMed  Google Scholar 

  76. Tao W, Yuan J, Zhou LY, Sun LN, Sun YL, Yang SJ, Li MH, Zeng S, Huang BF, Wang DS (2013) Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 8(5):e63604. https://doi.org/10.1371/journal.pone.0063604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Tao WJ, Chen JL, Tan DJ, Yang J, Sun LN, Wei J, Conte MA, Kocher TD, Wang DS (2018) Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-seq analysis. BMC Genomics 19(1):363. https://doi.org/10.1186/s12864-018-4756-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Wang L, Feng Z, Wang X, Wang X, Zhang X (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138. https://doi.org/10.1093/bioinformatics/btp612

    CAS  Article  PubMed  Google Scholar 

  79. Wang W, Zhu H, Dong Y, Tian Z, Dong T, Hu H, Niu C (2017) Dimorphic expression of sex-related genes in different gonadal development stages of sterlet, Acipenser ruthenus, a primitive fish species. Fish Physiol Biochem 43(6):1557–1569

    CAS  Article  Google Scholar 

  80. Wei L, Yang C, Tao WJ, Wang DS (2016) Genome-wide identification and transcriptome-based expression profiling of the sox gene family in the Nile tilapia (Oreochromis niloticus). Int J Mol Sci 17(3):270. https://doi.org/10.3390/ijms17030270

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL (2003) Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol 23(22):8084–8091. https://doi.org/10.1128/MCB.23.22.8084-8091.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Wu X, Wang P, Brown CA, Zilinski CA, Matzuk MM (2003) Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries. Biol Reprod 69(3):861–867. https://doi.org/10.1095/biolreprod.103.016022

    CAS  Article  PubMed  Google Scholar 

  83. Wu J, Xiong S, Jing J, Chen X, Wang W, Gui JF, Mei J (2015) Comparative transcriptome analysis of differentially expressed genes and signaling pathways between XY and YY testis in yellow catfish. PLoS One 10(8):e0134626. https://doi.org/10.1371/journal.pone.0134626

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Yan H, Shen X, Cui X, Wu Y, Wang L, Zhang L, Liu Q, Jiang Y (2018) Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in Takifugu rubripes gonad at the early stage of sex differentiation. Fish Physiol Biochem 44(5):1275–1290. https://doi.org/10.1007/s10695-018-0519-8

    CAS  Article  PubMed  Google Scholar 

  85. Yang YJ, Wang Y, Li Z, Zhou L, Gui JF (2017) Sequential, divergent, and cooperative requirements of Foxl2a and Foxl2b in ovary development and maintenance of zebrafish. Genetics. 205(4):1551–1572. https://doi.org/10.1534/genetics.116.199133

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Yang W, Chen HP, Cui XF, Zhang KW, Jiang DN, Deng SP, Zhu CH, Li GL (2018) Sequencing, de novo assembly and characterization of the spotted scat Scatophagus argus (Linnaeus 1766) transcriptome for discovery of reproduction related genes and SSRs. J Oceanol Limnol 36(4):1329–1134. https://doi.org/10.1007/s00343-018-7090-0

    CAS  Article  Google Scholar 

  87. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(2):W293–W297. https://doi.org/10.1093/nar/gkl031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Yu X, Wu L, Xie L, Yang S, Charkraborty T, Shi HJ, Wang DS, Zhou LY (2014) Characterization of two paralogous StAR genes in a teleost, Nile tilapia (Oreochromis niloticus). Mol Cell Endocrinol 392(1–2):152–162. https://doi.org/10.1016/j.mce.2014.05.013

    CAS  Article  PubMed  Google Scholar 

  89. Zhang MZ, Li GL, Zhu CH, Deng SP (2013) Effects of fish oil on ovarian development in spotted scat (Scatophagus argus). Anim Reprod Sci 141(1–2):90–97. https://doi.org/10.1016/j.anireprosci.2013.06.020

    CAS  Article  PubMed  Google Scholar 

  90. Zhang X, Guan G, Li M, Zhu F, Liu Q, Naruse K, Herpin A, Nagahama Y, Li J, Hong Y (2016) Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 6:19738. https://doi.org/10.1038/srep19738

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang XB, Li MR, Ma H, Liu XY, Shi HJ, Li MH, Wang DS (2017) Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology. 158(8):2634–2647. https://doi.org/10.1210/en.2017-00127

    Article  PubMed  Google Scholar 

  92. Zhang G, Wang W, Su M, Zhang J (2018) Effects of recombinant gonadotropin hormones on the gonadal maturation in the spotted scat, Scatophagus argus. Aquaculture. 483:263–272. https://doi.org/10.1016/j.aquaculture.2017.10.017

    CAS  Article  Google Scholar 

  93. Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165(3):438–455. https://doi.org/10.1016/j.ygcen.2009.04.017

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by Grants from Key Project of “Blue Granary Science and Technology Innovation” of the Ministry of Science and Technology (2018YFD0901203), grants from NSFC of China (31702326 and 41706174), Natural Science Foundation of Guangdong Province (2016A030313743, 2017A030313101, and 2018B030311050), grant from the Guangdong Provincial Special Fund For Modern Agriculture Industry Technology Innovation Teams (2019KJ149), grant from the Department of Education of Guangdong Province (2018KTSCX090 and 2018KQNCX106), Zhanjiang Science and Technology Bureau (2016A03017), Guangdong Ocean University Natural Science Research Program (2015 and 2016), Project of Provincial Key Platform and Major Scientific Research of Colleges and Universities in Guangdong (2015KTSCX058), Sail Projects of Guangdong (2014.1), Marine Fishery Science and Technology Extension Projects of Guangdong (A201408A06 and A201608B01), and Program for Scientific Research Start-up Funds of Guangdong Ocean University.

Author information

Affiliations

Authors

Contributions

FXH and DNJ carried out the experiments, performed the statistical analyses, and drafted the manuscript. YQH, UFM, WY, XFC, and CXT performed the experiments. HPC, HJS, SPD, and GLL participated in protocol development and data analysis. CHZ and DNJ designed and supervised the experiments, analyzed the data, and critically edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Hua Zhu.

Ethics declarations

Animal ethics

All experimental protocols involved in this study were approved by the Regulations for the Administration of Affairs Concerning Experimental Animals for the Science and Technology Bureau of China. Experiments involving S. argus were approved by the Animal Research and Ethics Committee of Guangdong Ocean University.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 751 kb)

ESM 2

(XLSX 2997 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, FX., Jiang, DN., Huang, YQ. et al. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). Fish Physiol Biochem 45, 1963–1980 (2019). https://doi.org/10.1007/s10695-019-00693-8

Download citation

Keywords

  • Scatophagus argus
  • Transcriptome
  • Gonad
  • Sex determination and differentiation
  • Sex steroid hormone