Skip to main content
Log in

Lipid digestion capacity in gilthead seabream (Sparus aurata) from first feeding to commercial size

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

To characterise the progression of lipid digestion capacity in gilthead seabream across life cycle, the activities of bile salt-activated lipase (BAL) and phospholipase A2 (PLA2) were determined in the digestive tracts of cultured gilthead seabream from first feeding to marketable size (49 μg to 300 g). Four trials were undertaken with gilthead seabream of different ages, fed on diets with fishmeal and fish oil as the main dietary protein and lipid sources and 21–25% lipid contents. Larvae of 4 days after hatching (dah) to 9 dah were fed rotifers with different fatty acid profiles: control (2.8% eicosapentaenoic acid, EPA; 1.6% docosahexaenoic acid, DHA; 5.4% n-3 long-chain polyunsaturated fatty acids, n-3 LC-PUFAs; and 0.2% arachidonic acid, ARA), low EPA (1.38% EPA, 1.6% DHA, 3.9% n-3 LC-PUFA and 0.4% ARA) or low LC-PUFA (0.7% EPA, 1.0% DHA, 1.8% n-3 LC-PUFA and 0.0% ARA) (% dry weight). Larvae fed the low-LC-PUFA diet showed a significantly lower growth at 10 dah. BAL activities were significantly higher in larvae fed the control diet than in those fed low-EPA and low-LC-PUFA diets at 9 dah. BAL activity increased with age across life cycle (49 μg to 300 g). PLA2 activity could not be detected in larvae but increased with age in juvenile and adult gilthead seabream (86 g to 295 g), similar to BAL. Results suggested a correspondence between the stimulation of lipid digestion capacity and growth performance in gilthead seabream by dietary essential fatty acids, particularly by EPA when DHA requirements are met in the diet especially in the very early stages of life cycle, when the progression of BAL and PLA2 activities could be used as indicators of the nutritional status of cultured gilthead seabream larvae. Finally, regarded that PLA2 activity was not detected in 4-dah to 44-dah gilthead seabream larvae, future works are suggested to assess the dietary effect on PLA2 activity and the PLA2 activity pattern along the larval stage of this species using a more sensitive detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austreng E, Skrede A, Eldegard Å (1979) Effect of dietary fat source on the digestibility of fat and fatty acids in rainbow trout and mink. Acta Agric Scand 29:119–126

    Article  CAS  Google Scholar 

  • Benedito-Palos L, Ballester-Lozano G, Pérez-Sánchez J (2014) Wide-gene expression analysis of lipid-relevant genes in nutritionally challenged gilthead sea bream (Sparus aurata). Gene 547:34–42

    Article  CAS  PubMed  Google Scholar 

  • Bessonart M, Izquierdo MS, Salhi M, Hernández-Cruz CM, González MM, Fernández-Palacios H (1999) Effect of dietary arachidonic acid levels on growth and survival of gilthead seabream (Sparus aurata L.) larvae. Aquaculture 179(1–4):265–275

    Article  CAS  Google Scholar 

  • Buchet V, Zambonino Infante JL, Cahu CL (2000) Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture 184:339–347

    Article  CAS  Google Scholar 

  • Calzada A (1996) Desarrollo postembrionario del intestino y órganos asociados de la dorada, Sparus aurata L., en cultivo. Estudio histológico y ultraestructural. Ph D Thesis. University of Cádiz, Spain

  • Calzada A, Medina A, González de Canales ML (1998) Fine structure of the intestine development in cultured seabream larvae. J Fish Biol 53:340–365

    Article  Google Scholar 

  • Christie WW (1989) Gas chromatography and lipids: a practical guide. The Oily Press, Ayr, pp 67–69

    Google Scholar 

  • Cousin JCB, Bauding-Laurencing F, Gabaudan J (1987) Ontogeny of enzimatic activities in fed and fasting turbot, Scophthalmus maximus L. J Fish Biol 30:15–33

    Article  CAS  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Douglas SE, Yúfera M, Martínez-Rodríguez G (2007) The spatiotemporal expression pattern of trypsinogen and bile salt-activated lipase during the larval development of red porgy (Pagrus pagrus, Pisces, Sparidae). Mar Biol 152:109–118

    Article  CAS  Google Scholar 

  • Díaz JP, Connes R (1997) Ontogenesis of the biliary tract in a teleost, the sea bass Dicentrarchus labrax L. Canadian Journal of Zoology-Revue Can d Zool 75:740–745

    Article  Google Scholar 

  • Díaz JP, Guyot E, Vigier S, Connes R (1997a) First events in lipid absorption during post-embryonic development of the anterior intestine in gilt-head sea bream. J Fish Biol 51:180–192

    Article  PubMed  Google Scholar 

  • Díaz JP, Mani-Ponset L, Guyot E, Connes R (1997b) Biliary lipid secretion during early post-embryonic development in three fishes of aquacultural interest: sea bass, Dicentrarchus labrax L, sea bream, Sparus aurata L, and pike-perch, Stizostedion lucioperca (L). J Exp Zool 277:365–370

    Article  Google Scholar 

  • Folch JM, Lees M, Stanley Sloane GH (1957) A simple method for the isolation and purification of total lipids from the animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Fox C (1990) Studies on polyunsaturated fatty acid nutrition in larvae of marine fish- the herring, Clupea harengus L. Ph D Thesis, University of Stirling, Scotland, 196pp

  • Gawlicka A, Parent B, Horn MH, Ross N, Opstad I, Torrissen OJ (2000) Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture 184:303–314

    Article  CAS  Google Scholar 

  • Guerrera MC, De Pascuale F, Muglia U, Caruso G (2015) Digestive enzymatic activity during ontogenetic development in zebrafish (Danio derio). J Exp Zool 324B:699–706

    Article  CAS  Google Scholar 

  • Hoehne-Reitan K, Kjørsvik E, Gjellesvik DR (2001a) Development of bile salt-dependent lipase and larval turbot. J Fish Biol 58:737–745

    Article  CAS  Google Scholar 

  • Hoehne-Reitan K, Kjørsvik E, Reitan I (2001b) Bile salt-dependent lipase in larval turbot, as influenced by density and lipid content of fed prey. J Fish Biol 58:746–754

    Article  CAS  Google Scholar 

  • Huang C, Zhou L, Liu Y, Lai (2006) A continuous fluerescence assay for phospholipase A2 with nontagged lipid. Analytical Biochemistry 351:11–17

  • Iijima N, Nakamura M, Uematsu K, Kayama M (1990) Partial purification and characterization of phospholipase A2 from the hepatopancreas of red seabream Pagrus major. Nippon Suisan Gakkaishi 56:1331–1339

    Article  CAS  Google Scholar 

  • Iijima N, Chosa S, Uematsu K, Goto K, Toshiba T, Kayama M (1997) Purification and characterization of phospholipase A2 from the piloric caeca of red seabream, Pagrus major. Fish Physiol Biochem 16:487–498

    Article  CAS  Google Scholar 

  • Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt-activated lipase from the hepatopancreas of red seabream, Pagrus major. Fish Physiol Biochem 18:59–69

    Article  CAS  Google Scholar 

  • Izquierdo MS, Henderson RJ (1998) The determination of lipase and phospholipase activities in gut contents of turbot (Scophthalmus maximus) by fluorescence-based assays. Fish Physiol Biochem 19:153–162

    Article  CAS  Google Scholar 

  • Izquierdo MS, Koven W (2011) Lipids. In: Holt J (ed) Larval fish nutrition. Wiley-Blackwell, John Wiley and Sons, Chichester, pp 47–84

    Chapter  Google Scholar 

  • Izquierdo MS, Watanabe T, Takeuchi T, Arakawa T, Kitajima C (1990) Optimum EFA levels in Artemia to meet the EFA requirements of red seabream (Pagrus major). In: Takeda M, Watanabe T (eds) The current status of fish nutrition in aquaculture. Tokyo University of Fisheries, Tokyo, pp 221–232

    Google Scholar 

  • Izquierdo MS, Socorro J, Arantzamendi L, Hernández-Cruz CM, Valencia A (2000) Recent advances in lipid nutrition in marine fish larvae. Fish Physiol Biochem 22:96–107

    Article  Google Scholar 

  • Izquierdo MS, Tandler A, Salhi M, Kolkovsky S (2001) Influence of dietary polar lipids’ quantity and quality on ingestion and assimilation of labelled fatty acids in larval gilthead seabream. Aquac Nutr 6:153–160

    Article  Google Scholar 

  • Kanazawa A (1985) Essential fatty acid and lipid requirement of fish. In: Cowey CB, Mackie AM, Bell JG (eds) Nutrition and feeding in fish. Academic, London, pp 287–298

    Google Scholar 

  • Kanazawa A, Koshio S, Teshima S (1989) Growth and survival of larval red seabream (Pagrus major) and Japanese flounder (Paralichthys olivaceous) fed microbound diets. J World Aquacult Soc 20:31–37

    Article  Google Scholar 

  • Kjørsvik E, Van der Meeren T, Kryvi H, Arnfinnson J, Kvenseth PG (1991) Early development of the digestive tract of cod larvae, Gadus morhua L., during start-feeding and starvation. J Fish Biol 38:1–15

    Article  Google Scholar 

  • Kolkovski S, Tandler A, GWm K, Gertler A (1993) The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead seabream larvae. Fish Physiol Biochem 12:203–209

    Article  CAS  PubMed  Google Scholar 

  • Koven WM, Tandler A, Sklan D, Kissil GW (1993) The association of eicosapentaenoic and docosahexaenoic acids in the main phospholipids of different-age Sparus aurata larvae with growth. Aquaculture 116:71–82

    Article  CAS  Google Scholar 

  • Koven WM, Henderson RJ, Sargent JR (1994) Lipid digestion in turbot (Scopthalmus maximus) II: lipolysis in vitro of 14C-labeled triacylglycerol, cholesterol ester and phosphatidylcholine by digesta from different segments of the digestive tract. Fish Physiol Biochem 13:275–283

    Article  CAS  PubMed  Google Scholar 

  • Koven WM, Henderson RJ, Sargent JR (1997) Lipid digestion in turbot (Scophthalmus maximus): in-vivo and in-vitro studies of the lipolytic activity in various segments of the digestive tract. Aquaculture 151:155–171

    Article  CAS  Google Scholar 

  • Koven W, Barr Y, Lutzky S, Ben-Atia I, Weiss R, Harel M, Behrens P, Tandler A (2001) The effect of dietary arachidonic acid (20: 4n-6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193(1–2):107–122

    CAS  Google Scholar 

  • Lie O, Lied E, Lambertsen G (1987) Lipid digestion in cod (Gadus morhua). Comp Biochem Physiol B Comp Biochem 88(2):697–700

    Article  Google Scholar 

  • Liu J, Caballero MJ, El-Sayed Ali T, Izquierdo MS, Hernández Cruz CM, Valencia A, Fernández-Palacios H (2002) Necessity of dietary lecithin and eicosapentaenoic acid for growth, survival, stress resistance and lipoprotein formation in gilthead seabream (Sparus aurata). Fish Sci 68:1165–1172

    Article  CAS  Google Scholar 

  • Mansbach (2001) Triacylglicerol Movement in Enterocytes In: Mansbach CM II, Tso P, Kuksis A (eds) Intestinal lipid metabolism. Kluwer Academic/Plenum, New York pp 215–233

  • Mata-Sotres JA, Martos-Sitcha JA, Astola A, Yúfera M, Martínez-Rodríguez G (2016a) Cloning and molecular ontogeny of digestive enzymes in fed and food-deprived developing gilthead seabream (Sparus aurata) larvae. Comp Biochem Physiol B 191:53–65

    Article  CAS  PubMed  Google Scholar 

  • Mata-Sotres JA, Moyano FJ, Martínez-Rodríguez G, Yúfera M (2016b) Daily rhythms of digestive enzyme activity and gene expression in gilthead seabream (Sparus aurata) during ontogeny. Comp Biochem Physiol A 197:43–51

    Article  CAS  Google Scholar 

  • Morais S, Rojas-Garcia CR, Conceição LEC, Rønnestad I (2005) Digestion and absorption of a pure triacylglycerol and a free fatty acid by Clupea harengus L. larvae. J Fish Biol 67:223–238

    Article  CAS  Google Scholar 

  • Moyano FJ, Díaz M, Alarcon FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay PK, Rout SK (1996) Effects of different dietary lipids on growth and tissue fatty acid changes in fry of the carp Catla catla (Hamilton). Aquac Res 27:623–630

    Article  Google Scholar 

  • Murashita K, Matsunari H, Kumon K, Tanaka Y, Shiozawa S, Furuita H, Oku H, Yamamoto T (2014) Characterization and ontogenetic development of digestive enzymes in Pacific bluefin tuna Thunnus orientalis larvae. Fish Physiol Biochem 40:1741–1755

    Article  CAS  PubMed  Google Scholar 

  • Murray HM, Gallant JW, Perez-Casanova JC, Johnson SC, Douglas SE (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62:816–833

    Article  CAS  Google Scholar 

  • Muzaffar Bazaz M, Keshavanath P (1993) Effect of feeding different levels of sardine oil on growth, muscle composition and digestive enzyme activities of masheer, Tor khudree. Aquaculture 115:111–119

    Article  CAS  Google Scholar 

  • Olsen RE, Henderson RJ, Ringo E (1998) The digestion and selective absorption of dietary fatty acids in Atlantic charr, Salvelinus alpinus. Aquac Nutr 4:13–21

    Article  CAS  Google Scholar 

  • Ono H, Iijima N (1998) Purification and characterization of phospholipase A2 from the hepatopancreas of red seabream, Pagrus major. Fish Physiol Biochem 18:135–147

    Article  CAS  Google Scholar 

  • Oozeki Y, Bailey KM (1995) Ontogenic development of digestive enzyme activities in larval walleye pollok, Theragra chalcogramma. Mar Biol 122:177–186

    CAS  Google Scholar 

  • Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2006) Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 251:377–401

    Article  Google Scholar 

  • Ribeiro L, Sarasquete C, Dinis MT (1999) Histological and histochemical development of the digestive system of Solea senegalensis (Kaup, 1858) larvae. Aquaculture 171:293–308

    Article  CAS  Google Scholar 

  • Rodríguez C, Pérez JA, Díaz M, Izquierdo MS, Hernández-Palacios H, Lorenzo A (1997) Influence of the EPA/DHA ratio in rotifers on gilthead seabream (Sparus aurata) larval development. Aquaculture 150:77–89

    Article  Google Scholar 

  • Rønnestad I, Finn RN, Lein I, Lie O (1995) Compartamental changes in the contents of total lipid, lipid classes and their associated fatty acids in the developing yolk-sac larvae of Atlantic halibut Hippoglossus hippoglossus (L.). Aquac Res 1:119–130

    Google Scholar 

  • Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac 5(Suppl. 1):S59–S98

    Article  Google Scholar 

  • Rotllan G, Moyano FJ, Andrés M, Díaz M, Estévez A, Gisbert E (2008) Evaluation of fluorometric substrates in he assessment of digestive enzymes in a decapod Maja brachydactyla larvae. Aquaculture 282:90–96

    Article  CAS  Google Scholar 

  • Rudd EA, Brockman HL (1984) Pancreatic carboxyl ester lipase. In: Borgstrom M, Brockman HL (eds) Lipases. Elsevier, Amsterdam, pp 185–204

    Google Scholar 

  • Sæle Ø, Nordgreen A, Olsvik PA, Hamre K (2010) Characterization and expression of digestive neutral lipases during ontogeny of Atlantic cod (Gadus morhua). Comp Biochem Physiol A Mol Integr Physiol 157:252–259

    Article  CAS  PubMed  Google Scholar 

  • Sæle Ø, Nordgreen A, Olsvik PA, Hamre K (2011) Characterisation and expression of secretory phospholipase A2 group IB during ontogeny of Atlantic cod (Gadus morhua). Br J Nutr 105:228–237

    Article  CAS  PubMed  Google Scholar 

  • Saleh R, Betancor MB, Roo J, Benítez-Santana T, Hernández-Cruz CM, Moyano FJ, Izquierdo MS (2012) Optimum krill phospholipids contents in microdiets for gilthead seabream (Sparus aurata) larvae. Aquac Nutr. https://doi.org/10.1111/j.1365-2095

  • Saleh R, Betancor MB, Roo J, Benítez-Santana T, Hernández-Cruz CM, Moyano FJ, Izquierdo MS (2012) Optimum krill phospholipids contents in microdiets for gilthead seabream (Sparus aurata) larvae. Aquac Nutr. 19:449–460. https://doi.org/10.1111/anu.12009

  • Salhi M, Izquierdo MS, Hernández Cruz CM, González M, Fernández-Palacios H (1994) Effect of lipid and n-3 LC-PUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture 124(1–4):275–282

    Article  CAS  Google Scholar 

  • Sarasquete MC, Polo A, González de Canales ML (1993) A histochemical and inmunohistochemical study of digestive enzymes and hormones during the larval development of the seabream, Sparus aurata L. Histochem J 25:430–437

    Article  CAS  PubMed  Google Scholar 

  • Slotboom A, Verheij HM, de Haas GH (1982) On the mechanism of phospholipase A2. In: Hawthorne JN, Ansell GB (eds) New York comprehensive biochemistry. Vol. 4, phospholipids. Elsevier Biomedical, Amsterdam, pp 359–434

    Google Scholar 

  • Srichanun M, Tantikitti C, Utarabhand P, Kortner T (2013) Gene expression and activity of digestive enzymes during the larval development of Assian seabass (Lates calcarifer). Comp Biochem Physiol B 165:1–9

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Toyota M, Satoh S, Watanabe T (1990) Requirement of juvenile red sea bream Pagrus major for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 56:1263–1269

    Article  CAS  Google Scholar 

  • Teshima S, Kanazawa A, Sakamoto S (1982) Microparticulate diets for the larvae of aquatic animals. Min Rev Data File Fish Res 2:67–86

    Google Scholar 

  • Toyota M, Takeuchi T, Watanabe T (1991) Dietary value to larval yellowtail of Artemia nauplii enriched with EPA and DHA. Abstracts of the annual meeting of the Japanese Society of Scientific Fisheries. April. Tokyo

  • Vallés R, Estévez A (2015) Effect of different enrichment products rich in docosahexaenoic acid on growth and survival of meagre, Argyrosomus regius (Asso, 1801). J World Aquacult Soc 46(2):191–200

    Article  CAS  Google Scholar 

  • Van den Bosch H (1980) Intracellular phospholipases A. Biochim Biophys Acta 604:191–246

    PubMed  Google Scholar 

  • Van den Bosch H (1982) Phospholipases. In: Hawthorne JN, Ansell GB (eds) New comprehensive biochemistry. Phospholipids, vol 4. Elsevier Biochemical, Amsterdam, pp 313–357

    Google Scholar 

  • Verger R (1984) Pancreatic lipase. In: Borgstrom B, Brockman HL (eds) Lipase. Elsevier, Amsterdam, pp 83–15

    Google Scholar 

  • Waite M (1987) Pancreatic and snake venom phospholipase A2. In: Handbook of lipid research. Vol. 5. The phospholipases. Prenum, New York, pp 155–241

    Google Scholar 

  • Wang CS, Hartsuck JA (1993) Bile salt activated lipase. A multiple function lipolytic enzyme. Biochim Biophys Acta 1166:1–19

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T (1993) Importance of docosahexaenoic acid in marine larval fish. J World Aquacult Soc 24:152–161

    Article  Google Scholar 

  • Watanabe T, Izquierdo MS, Takeuchi T, Satoh S, Kitajima C (1989) Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval seabream. Nippon Suisan Gakkaishi 55:1635–1640

    Article  CAS  Google Scholar 

  • Wold PA, Hoehne-Reitan K, Cahu CL, Zambonino Infante JL, Rainuzzo J, Kjørsvik E (2007) Phospholipids vs. neutral lipids: effects on digestive enzymes in Atlantic cod (Gadus morhua) larvae. Aquaculture 272:502–513

    Article  CAS  Google Scholar 

  • Wu FC, Ting YY, Chen HY (2002) Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. J Nutr 132:72–79

    Article  CAS  PubMed  Google Scholar 

  • Yúfera M, Pascual E, Polo A, Sarasquete MC (1993) Effect of starvation on the feeding ability of gilthead seabream (Sparus aurata L) larvae at first feeding. J Exp Mar Biol Ecol 16:259–272

    Article  Google Scholar 

  • Zambonino Infante JL, Cahu CL (1999) High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J Nutr 129:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Zambonino Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C: Toxicol Pharmacol 130(4):477–487

    CAS  Google Scholar 

  • Zambonino Infante JL, Gisbert E, Sarasquete S, Navarro I, Gutiérrez J, Cahu CL (2008) Ontogeny and physiology of the digestive system of marine fish larvae. In: JEP C, Bureau D, Kapoor BG (eds) Feeding and digestive functions in fishes. Science, Enfield, pp 281–348

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors of the present work would like to acknowledge all members of GIA (Grupo de Investigación en Acuicultura) IU-Ecoaqua from ULPGC for their technical support and provision and management of gilthead seabream broodstock and spawning.

Author information

Authors and Affiliations

Authors

Contributions

Marisol Izquierdo conceived of and designed the experiments. Leire Arantzamendi analysed the experimental results and wrote the paper. Javier Roo conducted the rotifer culture and their enrichment with lipid emulsions and baker’s yeast. Carmen Maria Hernández-Cruz and Leire Arantzamendi conducted the larval rearing and measurements of growth parameters. Leire Arantzamendi conducted the dissection of larvae and, together with Marisol Izquierdo, conducted the enzymatic assays. Hipólito Fernández-Palacios conducted the management of broodstock and the spawning. Leire Arantzamendi conducted the rearing of juvenile and adult gilthead seabream. This paper is contribution nº 883 from AZTI (Marine research).

Corresponding author

Correspondence to Leire Arantzamendi.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arantzamendi, L., Roo, F., Hernández-Cruz, C.M. et al. Lipid digestion capacity in gilthead seabream (Sparus aurata) from first feeding to commercial size. Fish Physiol Biochem 45, 469–484 (2019). https://doi.org/10.1007/s10695-018-0577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0577-y

Keywords

Navigation