Fish Physiology and Biochemistry

, Volume 44, Issue 3, pp 769–788 | Cite as

Analysis of the function of KIF3A and KIF3B in the spermatogenesis in Boleophthalmus pectinirostris

  • Yong-Qiang Zhao
  • Dan-Li Mu
  • Di Wang
  • Ying-Li Han
  • Cong-Cong Hou
  • Jun-Quan Zhu


Spermatogenesis represents one of the most complicated morphological transformation procedures. During this process, the assembly and maintenance of the flagella and intracellular transport of membrane-bound organelles required KIF3A and KIF3B. Our main goal was to test KIF3A and KIF3B location during spermatogenesis of Boleophthalmus pectinirostris. We cloned complete cDNA of KIF3A/3B from the testis of B. pectinirostris by PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of B. pectinirostris KIF3A/3B contained three domains: (a) the head region, (b) the stalk region, and (c) the tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNA were presented in all the tissues examined, with the highest expression seen in the testis. In situ hybridization (ISH) showed that KIF3A and KIF3B were distributed in the periphery of the nuclear in the spermatocyte and the early spermatid. In the late spermatid and mature sperm, the KIF3A and KIF3B mRNA were gradually gathered to one side where the flagella formed. Immunofluorescence (IF) showed that KIF3A, tubulin, and mitochondria were co-localized in different stages during spermiogenesis in B. pectinirostris. The temporal and spatial expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B might be involved in flagellar assembly and maintenance at the mRNA and protein levels. Moreover, these proteins may transport the mitochondria resulting in flagellum formation in B. pectinirostris.


KIF3A/3B Boleophthalmus pectinirostris Spermiogenesis Flagellar development 



Untranslated region


Rapid amplification of cDNA ends


Real-time quantitative polymerase chain reaction


Open reading frame


In situ hybridization




Intraflagellar transport


Kinesin superfamily proteins


Kinesin-associated protein 3


Phosphate buffered saline


Optimum cutting temperature




Sodium chloride






Albumin from bovine serum


Transmission electron microscopy


Standard deviation



We are indebted to all members of the Fish Reproduction Physiology Laboratory at Ningbo University and the Sperm Laboratory at Zhejiang University for their enlightening discussions.

Funding information

This project was partially supported by the National Natural Science Foundation of China (No. 31272642), Scientific and Technical Project of Ningbo (No. 2015C110005), Ningbo Natural Science Foundation (No. 2016A610081), Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, K.C. Wong Magna Fund in Ningbo University, and Scientific Research Foundation of Graduate School of Ningbo University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10695_2017_461_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1602 kb)


  1. Ahmed EA, de Rooij DG (2009) Staging of mouse seminiferous tubule cross-sections. Methods Mol Biol 558:263–277CrossRefPubMedGoogle Scholar
  2. Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC (2003) IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278(36):34211–34218. CrossRefPubMedGoogle Scholar
  3. Beech PL, Pagh-Roehl K, Noda Y, Hirokawa N, Burnside B, Rosenbaum JL (1996) Localization of kinesin superfamily proteins to the connecting cilium of fish photoreceptors. J Cell Sci 109(Pt 4):889–897PubMedGoogle Scholar
  4. Berezuk MA, Schroer TA (2004) Fractionation and characterization of kinesin II species in vertebrate brain. Traffic 5(7):503–513. CrossRefPubMedGoogle Scholar
  5. Bhullar B, Zhang Y, Junco A, Oko R, van der Hoorn FA (2003) Association of kinesin light chain with outer dense fibers in a microtubule-independent fashion. J Biol Chem 278(18):16159–16168. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chennathukuzhi V, Morales CR, El-Alfy M, Hecht NB (2003) The kinesin KIF17b and RNA-binding protein TB-RBP transport specific cAMP-responsive element modulator-regulated mRNAs in male germ cells. Proc Natl Acad Sci U S A 100(26):15566–15571. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chung EY (2008) Ultrastructure of germ cells, the Leydig cells, and Sertoli cells during spermatogenesis in Boleophthalmus pectinirostris (Teleostei, Perciformes, Gobiidae). Tissue Cell 40:195–205CrossRefPubMedGoogle Scholar
  8. Cho KI, Cai Y, Yi H, Yeh A, Aslanukov A, Ferreira PA (2007) Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8(12):1722–1735. CrossRefPubMedGoogle Scholar
  9. Cole DG (2005) Intraflagellar transport: keeping the motors coordinated. Curr Biol 15:798–801CrossRefGoogle Scholar
  10. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141(4):993–1008. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Chuang PT, Reiter JF (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10(1):70–76. CrossRefPubMedGoogle Scholar
  12. Coy DL, Howard J (1994) Organelle transport and sorting in axons. Curr Opin Neurobiol 4(5):662–667. CrossRefPubMedGoogle Scholar
  13. Dang R, Zhu JQ, Tan FQ, Wang W, Zhou H, Yang WX (2012) Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus). Mol Biol Rep 39(5):5589–5598. CrossRefPubMedGoogle Scholar
  14. Gu C, Zhou W, Puthenveedu MA, Xu M, Jan YN, Jan LY (2006) The microtubule plus-end tracking protein EB1 is required for Kv1 voltage-gated K+ channel axonal targeting. Neuron 52(5):803–816. CrossRefPubMedGoogle Scholar
  15. Gu Y, Gu C (2010) Dynamics of Kv1 channel transport in axons. PLoS One 5(8):e11931. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hall ES, Eveleth J, Jiang C, Redenbach DM, Boekelheide K (1992) Distribution of the microtubule-dependent motors cytoplasmic dynein and kinesin in rat testis. Biol Reprod 46(5):817–828. CrossRefPubMedGoogle Scholar
  17. Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T (2006) Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem 281(7):4094–4099. CrossRefPubMedGoogle Scholar
  18. Henson JH, Cole DG, Roesener CD, Capuano S, Mendola RJ, Scholey JM (1997) The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. Cell Motil Cytoskeleton 38(1):29–37.<29::AID-CM4>3.0.CO;2-C CrossRefPubMedGoogle Scholar
  19. Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 73(4):241–278. CrossRefPubMedGoogle Scholar
  20. Hess R, Franca L (2009) Spermatogenesis and cycle of the seminiferous epithelium. In: CY Cheng (ed) Molecular mechanisms in spermatogenesis, pp 1–15. New York: SpringerGoogle Scholar
  21. Hess RA, Renato FL (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15. PubMedGoogle Scholar
  22. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350):519–526. CrossRefPubMedGoogle Scholar
  23. Hirokawa N, Noda Y, Okada Y (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10(1):60–73CrossRefPubMedGoogle Scholar
  24. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Natl Rev Mol Cell Biol 10:682–696CrossRefGoogle Scholar
  25. Hu JR, Xu N, Tan FQ, Wang DH, Liu M, Yang WX (2012) Molecular characterization of a KIF3A-like kinesin gene in the testis of the Chinese fire-bellied newt Cynops orientalis. Mol Biol Rep 39(4):4207–4214. CrossRefPubMedGoogle Scholar
  26. Johnson KJ, Hall ES, Boekelheide K (1996) Kinesin localizes to the trans-Golgi network regardless of microtubule organization. Eur J Cell Biol 69(3):276–287PubMedGoogle Scholar
  27. Kierszenbaum AL, Rivkin E, Tres LL (2011) Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 1(3):221–230. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125(5):1095–1107. CrossRefPubMedGoogle Scholar
  29. Lehti MS, Kotaja N, Sironen A (2013) KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol 377(1–2):44–55. CrossRefPubMedGoogle Scholar
  30. Lehti MS, Sironen A (2016) Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 151(4):R43–R54. CrossRefPubMedGoogle Scholar
  31. Marszalek JR, Goldstein LS (2000) Understanding the functions of kinesin-II. Biochim Biophys Acta 1496(1):142–150. CrossRefPubMedGoogle Scholar
  32. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci U S A 96(9):5043–5048. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miller MG, Mulholland DJ, Vogl AW (1999) Rat testis motor proteins associated with spermatid translocation (dynein) and spermatid flagella (kinesin-II). Biol Reprod 60(4):1047–1056. CrossRefPubMedGoogle Scholar
  34. Morris RL, Scholey JM (1997) Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J Cell Biol 138(5):1009–1022. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mruk DD, Cheng CY (2004) Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25(5):747–806. CrossRefPubMedGoogle Scholar
  36. Muresan V, Lyass A, Schnapp BJ (1999) The kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors. J Neurosci 19(3):1027–1037CrossRefPubMedGoogle Scholar
  37. Nakata T, Hirokawa N (1995) Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J Cell Biol 131(4):1039–1053. CrossRefPubMedGoogle Scholar
  38. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79(7):1209–1220. CrossRefPubMedGoogle Scholar
  39. Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K (2004) Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol 6(4):328–334. CrossRefPubMedGoogle Scholar
  40. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95(6):829–837. CrossRefPubMedGoogle Scholar
  41. Ocbina PJ, Anderson KV (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 37(8):2030–2038CrossRefGoogle Scholar
  42. Pan X, Ou G, Civelekoglu-Scholey G, Blacque OE, Endres NF, Tao L, Mogilner A, Leroux MR, Vale RD, Scholey JM (2006) Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J Cell Biol 174(7):1035–1045. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ruwanpura SM, McLachlan RI, Meachem SJ (2010) Hormonal regulation of male germ cell development. J Endocrinol 205(2):117–131. CrossRefPubMedGoogle Scholar
  44. San Agustin JT, Pazour GJ, Witman GB (2015) Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell 26(24):4358–4372. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Scholey JM (2008) Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol 180(1):23–29. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Stauber T, Simpson JC, Pepperkok R, Vernos I (2006) A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 16(22):2245–2251. CrossRefPubMedGoogle Scholar
  47. Sun X, Yang WX (2010) Mitochondria: transportation, distribution and function during spermiogenesis. Adv Biosci Biotechnol 1(02):97–109. CrossRefGoogle Scholar
  48. Takeda S, Yamazaki H, Seog DH, Kanai Y, Terada S, Hirokawa N (2000) Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J Cell Biol 148(6):1255–1265. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93(7):1147–1158. CrossRefPubMedGoogle Scholar
  50. Teng J, Rai T, Tanaka Y, Takei Y, Nakata T, Hirasawa M, Kulkarni AB, Hirokawa N (2005) The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat Cell Biol 7(5):474–482. CrossRefPubMedGoogle Scholar
  51. Terada S, Kinjo M, Hirokawa N (2000) Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103(1):141–155. CrossRefPubMedGoogle Scholar
  52. tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtova A, Bracko O, Gundelfinger ED, Brandstatter JH (2005) Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168:825–836CrossRefGoogle Scholar
  53. Wagner MK, Yost HJ (2000) Left-right development: the roles of nodal cilia. Curr Biol 10:149–151CrossRefGoogle Scholar
  54. Wang W, Dang R, Zhu JQ, Yang WX (2010) Identification and dynamic transcription of KIF3A homologue gene in spermiogenesis of Octopus tankahkeei. Comp Biochem Phys Part A 157:237–245CrossRefGoogle Scholar
  55. Witman GB (2003) Cell motility: deaf Drosophila keep the beat. Curr Biol 13(20):R796–R798. CrossRefPubMedGoogle Scholar
  56. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci U S A 93(16):8443–8448. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yu K, Hou L, Zhu JQ, Ying XP, Yang WX (2009) KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 337(1):113–123. CrossRefPubMedGoogle Scholar
  58. Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl. 8):108–117. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine SciencesNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations