Fish Physiology and Biochemistry

, Volume 44, Issue 3, pp 747–768 | Cite as

Effects of Rhizoma Alismatis extract on biochemical indices and adipose gene expression in oleic acid-induced hepatocyte injury in Jian carp (Cyprinus carpio var. Jian)

  • Jinliang Du
  • Rui Jia
  • Li-ping Cao
  • Weidong Ding
  • Pao XuEmail author
  • Guojun YinEmail author


Fatty liver is an increasingly serious disease of fish in aquaculture. However, the mechanisms responsible for the occurrence of fatty liver remain unclear, and no effective methods for the prevention and treatment of this disease have yet been found. In the present study, we aimed to develop an in vitro model of hepatocyte injury using oleic acid as hepatotoxicant and evaluate the protective effects of Rhizoma Alismatis extract (RAE) in Jian carp using this model. Primary hepatocytes from Jian carp were isolated and purified and cultured in vitro. The result indicated that 0.4 mmol L−1 oleic acid and 48 h could be the optimal conditions to induce hepatocyte injury model in cultured hepatocytes. Hepatocytes were exposed to oleic acid, followed by the addition of RAE at 0, 1, 5, 10, 20, or 50 μg mL−1. The hepatocytes and supernatant were then analyzed. RAE suppressed oleic acid-induced elevations in aspartate aminotransferase, alanine aminotransferase, triglycerides, total cholesterol, lactate dehydrogenase, alkaline phosphatase, cholinesterase, malondialdehyde, γ-glutamyl transferase, cytochrome P450 1A, cytochrome P450 2E1, liver-type fatty acid binding protein, free fatty acid, fatty acid synthetase, and tumor necrosis factor-α (P < 0.01 or P < 0.05); reduced protein levels of cytochrome P450 1A, nuclear factor (NF)-κB p65, and NF-κB c-Rel; and inhibited cytochrome P4503A, NF-κB c-Rel, nuclear factor erythroid-related factor 2, peroxisome proliferator-activated receptor-α, and cytochrome P4501A mRNA levels. In conclusion, RAE exhibited a protective effect against hepatocyte injury in Jian carp. Further in vivo studies are needed to provide more evidence for the use of RAE as a hepatoprotective agent for the treatment of hepatocyte injury.


Jian carp Hepatocyte Oleic acid Hepatocyte injury Rhizoma Alismatis extract 



Total cholesterol


Reactive oxygen species




Rhizoma Alismatis extract


Free fatty acid




Glutamate pyruvate transaminase


Alkaline phosphatase


Glutamate oxalate transaminase


γ-Glutamyl transferase


Lactate dehydrogenase


Cytochrome P450 1A




Cytochrome P450 3A


Phosphate-buffered saline


Cytochrome P4502E1


Nuclear factor erythroid-related factor 2


Immunoglobulin G


Peroxisome proliferator-activated receptor-α


Free fatty acids


Liver-type fatty acid binding protein


Fatty acid synthase


Acetyl coenzyme A carboxylase


Lipid peroxide


Fetal calf serum

NF-κB p65

Nuclear factor (NF)-κB p65

NF-κB c-Rel

Nuclear factor (NF)-κB c-Rel


Tumor necrosis factor-α


Non-alcoholic fatty liver disease


Bicinchonininc acid



This work was supported by the Central Public-Interest Scientific Institution Basal Research Fund of China (2015JBFM01).


  1. Anders LC, Yeo H, Kaelin BR, Lang AL, Bushau AM, Douglas AN, Cave M, Arteel GE, McClain CJ, Beier JI (2016) Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice. Toxicol Appl Pharmacol 311:34–41. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anurag L, Aniket S, Shalik J, Amarja L, Dhananjay R, Sachin J (2015) Non-alcoholic fatty liver disease prevalence and associated risk factors—a study from rural sector of Maharashtra. Trop Gastroenterol 36(1):25–30CrossRefPubMedGoogle Scholar
  3. Avni Y, Shirin H, Aeed H, Shahmurov M, Birkenfeld S, Bruck R (2004) Thioacetamide-induced hepatic damage in a rat nutritional model of steatohepatitis. Hepatol Res 30(3):141–147. CrossRefPubMedGoogle Scholar
  4. Awad AS, Abd Al Haleem EN, El-Bakly WM, Sherief MA (2016) Thymoquinone alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, apoptosis. Naunyn Schmiedeberg's Arch Pharmacol 389(4):381–391. CrossRefGoogle Scholar
  5. Bahcecioglu IH, Yalniz M, Ataseven H, Ilhan N, Ozercan IH, Seckin D, Sahin K (2005) Levels of serum hyaluronic acid, TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis. Hepato-Gastroenterology 52(65):1549–1553PubMedGoogle Scholar
  6. Bai SY, Wang JS, Zhao QH (2015) Relationship of free fatty acid, reactive oxygen species and sperm mitochondrial membrane potential in obese male infertility patients. J China Med Univ 44(7):653–656Google Scholar
  7. Bai L, Zhang Y, Xie C, Wang R, Zhao S, Jia Y, Liu E (2016) Overexpression of PPARgamma induces adipogenic steatosis in mouse primary hepatocytes. J Zhejiang Univ (Med Sci) 45(1):68–74Google Scholar
  8. Berry MN, Halls HJ, Grivell MB (1992) Techniques for pharmacological and toxicological studies with isolated hepatocyte suspensions. Life Sci 51(1):1–16CrossRefPubMedGoogle Scholar
  9. Boaru DA, Dragos N, Schirmer K (2006) Microcystin-LR induced cellular effects in mammalian and fish primary hepatocyte cultures and cell lines: a comparative study. Toxicology 218(2–3):134–148. CrossRefPubMedGoogle Scholar
  10. Canaple L, Nurdin N, Angelova N, Saugy D, Hunkeler D, Desvergne B (2001) Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules—in vitro cryopreservation studies. J Hepatol 34(1):11–18CrossRefPubMedGoogle Scholar
  11. Chen F, Gao CZ (2010) Relationship between intima media thickness and free fatty acids in hypertensive patients with metabolic syndrome. Pract J Cardiac Cereb Pneum Vasc Dis 18(10):1414–1415Google Scholar
  12. Chen QL, Gong Y, Luo Z, Zheng JL, Zhu QL (2013) Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco. Aquat Toxicol 142-143:380–386. CrossRefPubMedGoogle Scholar
  13. Christensen KE, Mikael LG, Leung KY, Levesque N, Deng L, Wu Q, Malysheva OV, Best A, Caudill MA, Greene ND, Rozen R (2015) High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr 101(3):646–658. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chudapongse N, Kamkhunthod M, Poompachee K (2010) Effects of Phyllanthus urinaria extract on HepG2 cell viability and oxidative phosphorylation by isolated rat liver mitochondria. J Ethnopharmacol 130(2):315–319. CrossRefPubMedGoogle Scholar
  15. Du ZY, Clouet P, Degrace P, Zheng WH, Froyland L, Tian LX, Liu YJ (2008) Hypolipidaemic effects of fenofibrate and fasting in the herbivorous grass carp (Ctenopharyngodon idella) fed a high-fat diet. Br J Nutr 100(6):1200–1212. CrossRefPubMedGoogle Scholar
  16. Duan XY, Wang JB, Yin XL, Yan SF, Xiao Y (2004) A 60-day feeding study of Rhizoma Alismatis Orientalis in SD rats. Chin J Food Hyg 16(2):108–111Google Scholar
  17. El-Kafoury BM, Seif AA, El-Aziz Abd El-Hady EA, El-Sebaiee AE (2016) Effects of transcutaneous electrical stimulation of lower limb muscles on experimental fatty liver. Arab J Gastroenterol 17(1):20–28. CrossRefPubMedGoogle Scholar
  18. Fan YH, He CH, Liu GF, Zhang HB (2008) Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes. Cytotechnology 58(2):85–92. CrossRefGoogle Scholar
  19. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40(1):185–194. CrossRefPubMedGoogle Scholar
  20. Gaemers IC, Groen AK (2006) New insights in the pathogenesis of non-alcoholic fatty liver disease. Curr Opin Lipidol 17(3):268–273. CrossRefPubMedGoogle Scholar
  21. George J, Murray M, Byth K, Farrell GC (1995) Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 21(1):120–128PubMedGoogle Scholar
  22. Guo JH, Jiang YH, Yang CH, Chen YZ, Sun NN (2016) Nuclear transcription factor nf-kappa B of the latest research progress. J Changchun Univ Chin Med 32(2):380–382Google Scholar
  23. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224. CrossRefPubMedGoogle Scholar
  24. He Q, Li JK, Li F, Li RG, Zhan GQ, Li G, Du WX, Tan HB (2015) Mechanism of action of gypenosides on type 2 diabetes and non-alcoholic fatty liver disease in rats. World J Gastroenterol 21(7):2058–2066. CrossRefPubMedPubMedCentralGoogle Scholar
  25. He J, Tian Y, Li J, Shen J, Tao Z, Fu Y, Niu D, Lu L (2013) Expression pattern of L-FABP gene in different tissues and its regulation of fat metabolism-related genes in duck. Mol Biol Rep 40(1):189–195. CrossRefPubMedGoogle Scholar
  26. Hong X, Tang H, Wu L, Li L (2006) Protective effects of the Alisma orientalis extract on the experimental nonalcoholic fatty liver disease. J Pharm Pharmacol 58(10):1391–1398. CrossRefPubMedGoogle Scholar
  27. Hostetler HA, McIntosh AL, Atshaves BP, Storey SM, Payne HR, Kier AB, Schroeder F (2009) L-FABP directly interacts with PPARalpha in cultured primary hepatocytes. J Lipid Res 50(8):1663–1675. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huang CH, Xiao TY, Hu Y, Zhao YR, Liu QL (2014) Analysis on research status of fatty liver disease in aquaculture fish. Chin J Anim Nutr 26(7):1715–1722Google Scholar
  29. Jia R, Du JL, Cao LP, Liu YJ, Xu P, Yin GJ (2015) Hepatoprotective and antioxidant effects of phyllanthin against carbon tetrachloride-induced liver injury in Cyprinus carpio. Aquac Int 23(4):883–893. CrossRefGoogle Scholar
  30. Jordy AB, Kraakman MJ, Gardner T, Estevez E, Kammoun HL, Weir JM, Kiens B, Meikle PJ, Febbraio MA, Henstridge DC (2015) Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. Am J Physiol Endocrinol Metab 308(9):E778–E791. CrossRefPubMedGoogle Scholar
  31. Jung’a JO, Mitema ES, Gutzeit HO (2005) Establishment and comparative analyses of different culture conditions of primary hepatocytes from nile tilapia (Oreochromis niloticus) as a model to study stress induction in vitro. In Vitro Cell Dev Biol Anim 41(1-2):1–6. CrossRefPubMedGoogle Scholar
  32. Kang OH, Kim SB, Seo YS, Joung DK, Mun SH, Choi JG, Lee YM, Kang DG, Lee HS, Kwon DY (2013) Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur Rev Med Pharmacol Sci 17(19):2578–2586PubMedGoogle Scholar
  33. Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, Lee YS (2004) Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340(1):99–109. CrossRefPubMedGoogle Scholar
  34. Kono H, Wheeler MD, Rusyn I, Lin M, Seabra V, Rivera CA, Bradford BU, Forman DT, Thurman RG (2000) Gender differences in early alcohol-induced liver injury: role of CD14, NF-kB, and TNF-a. Am J Physiol Gastrointest Liver Physiol 278:G652–G661CrossRefPubMedGoogle Scholar
  35. Lacroix DSM, Moncion A, Cheron G, Cresteil T (1997) Expression of CYP3A in the human liver—evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 247(2):625–634CrossRefPubMedGoogle Scholar
  36. Lee SS, Chan WY, Lo CK, Wan DC, Tsang DS, Cheung WT (2004) Requirement of PPAR alpha in maintaining phospholipid and triacylglycerol homeostasis during energy deprivation. J Lipid Res 45(11):2025–2037CrossRefPubMedGoogle Scholar
  37. Li J, Feng WJ (2006a) Experimental study into the effect of raw hawthorn fruit, alisma and zedoary in treating fatty liver and the interaction of the three herbs. Shanxi J Tradit Chin Med 22(3):57–59Google Scholar
  38. Li J, Feng WJ (2006b) Experimental study into the effect of raw hawthorn fruit, alisma and zedoary in treating fatty liver and the interaction of the three herbS. Shanxi J Tradit Chin Med 22(3):57–59Google Scholar
  39. Li S, Jin S, Song C, Chen C, Zhang Y, Xiang Y, Xu Y, Feng Y, Wan Q, Jiang H (2016) The metabolic change of serum lysophosphatidylcholines involved in the lipid lowering effect of triterpenes from Alismatis rhizoma on high-fat diet induced hyperlipidemia mice. J Ethnopharmacol 177:10–18. CrossRefPubMedGoogle Scholar
  40. Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A, DeCarli LM (2004) Model of nonalcoholic steatohepatitis. Am J Clin Nutr 79(3):502–509CrossRefPubMedGoogle Scholar
  41. Lin H, Li ZX, Liu JW, Zhang YJ (2007) Nuclear factor kappa b and liver injury. Chin J Bases Clin Gen Surg 14(6):731–734Google Scholar
  42. Lin DM, Mao YQ, Cai FS (1990) Nutritional lipid liver disease of grass carp ctenopharyngodon idullus ( V.) Chin J Oceanol Limnol 8(4):363–373CrossRefGoogle Scholar
  43. Liu Y, Cao L, Du J, Jia R, Wang J, Xu P, Yin G (2015) Protective effects of Lycium barbarum polysaccharides against carbon tetrachloride-induced hepatotoxicity in precision-cut liver slices in vitro and in vivo in common carp (Cyprinus carpio L.) Comp Biochem Physiol C Toxicol Pharmacol 169:65–72. CrossRefPubMedGoogle Scholar
  44. Liu YJ, Du JL, Cao LP, Jia R, Shen YJ, Zhao CY, Xu P, Yin GJ (2015a) Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.) Int Immunopharmacol 25(1):112–120. CrossRefPubMedGoogle Scholar
  45. Liu YJ, Du JL, Cao LP, Jia R, Shen YJ, Zhao CY, Xu P, Yin GJ (2015b) Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.) Int Immunopharmacol 25(1):112–120. CrossRefPubMedGoogle Scholar
  46. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  47. Lu RH, Liang XF, Sun JJ, Yang F, Wang M, Li XY, Bai XL (2015) Establishment of a model of grass carp hepatocyte steatosis and analysis of lipid metabolism gene expression. J Fish Sci China 22(1):24–32Google Scholar
  48. Mattson MP, Meffert MK (2006) Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 13(5):852–860. CrossRefPubMedGoogle Scholar
  49. Morais S, Taggart JB, Guy DR, Bell JG, Tocher DR (2012) Hepatic transcriptome analysis of inter-family variability in flesh n-3 long-chain polyunsaturated fatty acid content in Atlantic salmon. BMC Genomics 13:410. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Moravcova A, Cervinkova Z, Kucera O, Mezera V, Rychtrmoc D, Lotkova H (2015) The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol Res 64(Suppl 5):S627–S636PubMedGoogle Scholar
  51. Niemela O, Parkkila S, Juvonen RO, Viitala K, Gelboin HV, Pasanen M (2000) Cytochromes P450 2A6, 2E1, and 3A and production of protein-aldehyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases. J Hepatol 33(6):893–901CrossRefPubMedGoogle Scholar
  52. Nishimura J, Dewa Y, Okamura T, Jin M, Saegusa Y, Kawai M, Umemura T, Shibutani M, Mitsumori K (2008) Role of Nrf2 and oxidative stress on fenofibrate-induced hepatocarcinogenesis in rats. Toxicol Sci 106(2):339–349. CrossRefPubMedGoogle Scholar
  53. Ohnuma T, Anan E, Hoashi R, Takeda Y, Nishiyama T, Ogura K, Hiratsuka A (2011) Falcarindiol induces phase II drug-metabolizing enzymes, blocks carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation. Biol Pharm Bull 34(3):371–378CrossRefPubMedGoogle Scholar
  54. Okamoto Y, Tanaka S, Haga Y (2002) Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model. Hepatol Res 23(2):138–144CrossRefPubMedGoogle Scholar
  55. Olaniyan LW, Maduagwu EN, Akintunde OW, Oluwayelu OO, Brai BI (2015) Lamivudine-induced liver injury. Open Access Maced J Med Sci 3(4):545–550. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ozden S, Catalgol B, Gezginci-Oktayoglu S, Arda-Pirincci P, Bolkent S, Alpertunga B (2009) Methiocarb-induced oxidative damage following subacute exposure and the protective effects of vitamin E and taurine in rats. Food Chem Toxicol 47(7):1676–1684. CrossRefPubMedGoogle Scholar
  57. Patel TP, Rawal K, Soni S, Gupta S (2016) Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis. Biomed Pharmacother 83:785–791. CrossRefPubMedGoogle Scholar
  58. Relja B, Szermutzky M, Henrich D, Maier M, de Haan JJ, Lubbers T, Buurman WA, Marzi I (2010) Intestinal-FABP and liver-FABP: novel markers for severe abdominal injury. Acad Emerg Med 17(7):729–735. CrossRefPubMedGoogle Scholar
  59. Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278(46):45777–45784. CrossRefPubMedGoogle Scholar
  60. Rouach H, Fataccioli V, Gentil M, French SW, Morimoto M, Nordmann R (1997) Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatology 25(2):351–355. CrossRefPubMedGoogle Scholar
  61. Schoonjans K, Staels B, Auwerx J (1996) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 37(5):907–925PubMedGoogle Scholar
  62. Semenkovich CF (1997) Regulation of fatty acid synthase (FAS). Prog Lipid Res 36(1):43–53CrossRefPubMedGoogle Scholar
  63. Sivaramakrishna B, Suresh A, Venkataramana P, Radhakrishnaiah K (1992) Copper influenced changes of lipid metabolism in the tissues of freshwater teleost Labeo rohita (Hamilton). Biochem Int 26(2):335–342PubMedGoogle Scholar
  64. Song HJ, Sneddon AA, Heys SD, Wahle KW (2012) Regulation of fatty acid synthase (FAS) and apoptosis in estrogen-receptor positive and negative breast cancer cells by conjugated linoleic acids. Prostaglandins Leukot Essent Fatty Acids 87(6):197–203. CrossRefPubMedGoogle Scholar
  65. Suk M, Shin Y (2015) Effect of high-intensity exercise and high-fat diet on lipid metabolism in the liver of rats. J Exerc Nutr Biochem 19(4):289–295. CrossRefGoogle Scholar
  66. Sun RQ, Zhao Y, Jia RR, Qiu L (2014) Research progress of liver fatty acid binding protein and lipid metabolic disease. Chin J Gastroenterol Hepatol 23(4):368–372Google Scholar
  67. Tainaka T, Shimada Y, Kuroyanagi J, Zang L, Oka T, Nishimura Y, Nishimura N, Tanaka T (2011) Transcriptome analysis of anti-fatty liver action by Campari tomato using a zebrafish diet-induced obesity model. Nutr Metab 8:88CrossRefGoogle Scholar
  68. Thibaut R, Schnell S, Porte C (2006) The interference of pharmaceuticals with endogenous and xenobiotic metabolizing enzymes in carp liver: an in-vitro study. Environ Sci Technol 40(16):5154–5160CrossRefPubMedGoogle Scholar
  69. Vacaru AM, Di Narzo AF, Howarth DL, Tsedensodnom O, Imrie D, Cinaroglu A, Amin S, Hao K, Sadler KC (2014) Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish. Dis Model Mech 7(7):823–835. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Verreth J, Coppoolse J, Segner H (1994) The effect of low HUFA- and high HUFA-enriched Artemia, fed at different feeding levels, on growth, survival, tissue fatty acids and liver histology of Clarias gariepinus larvae. Aquaculture 126(1–2):137–150CrossRefGoogle Scholar
  71. Wang XH (1999) Progress in the study on Alisma orientalis. Chin Trad Herb Drugs 30(7):557–559Google Scholar
  72. Wang ZH, An XZ, Ren ZC (2010) The protective action of Rhizoma Alismatis for acute liver injury of rat. China Anim Health Inspec 27(9):56–57Google Scholar
  73. Wang JW, Chen XY, Hu PY, Tan MM, Tang XG, Huang MC, Lou ZH (2016) Effects of Linderae radix extracts on a rat model of alcoholic liver injury. Exp Ther Med 11(6):2185–2192. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wang ZM, Gan YL (2011) Inhibition of DNA methyltransferases by tea polyphenol (-)-epigallocatechin-3-gallate in a cellular model of non-alcoholic fatty liver. China Med 06(11):1349–1351Google Scholar
  75. Wang GQ, Gong YW, Anderson J, Sun DF, Minuk G, Roberts MS, Burczynski FJ (2005) Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 42(4):871–879. CrossRefPubMedGoogle Scholar
  76. Wang YQ, Hu XQ, Ren BX, Wang JF, Xue CH (2009) Mechanism of orotic acid-induced fatty liver in rats. Acta Nutr Sin 31(4):330–338Google Scholar
  77. Wang C, Lv ZL, Kang YJ, Xiang TX, Wang PL, Jiang Z (2013) Aquaporin-9 downregulation prevents steatosis in oleic acid-induced non-alcoholic fatty liver disease cell models. Int J Mol Med 32(5):1159–1165. CrossRefPubMedGoogle Scholar
  78. Wu Y, Ye Q, Zheng Q, Zhang L, Zhao Y (2014) Study of synergistic effect of free fatty acid and iron on the establishment of nonalcoholic fatty liver disease model. J Chin Prev Med 48(10):904–908Google Scholar
  79. Xiao PH (2005) Causes of fatty liver in fish and its control measure. Hebei Fish 2:44–45Google Scholar
  80. Xie CF, Chen Z, Zhang CF, Xu X, Jin JB, Zhan WH, Han TY, Wang JB (2016) Dihydromyricetin ameliorates oleic acid-induced lipid accumulation in L02 and HepG2 cells by inhibiting lipogenesis and oxidative stress. Life Sci 157:131–139. CrossRefPubMedGoogle Scholar
  81. Xie J, Han YY (2012) Advances in studies on treating adiposis hepatica with traditional Chinese medicine. Drug Eval Res 35(2):143–146Google Scholar
  82. Xu W, Hellerbrand C, Kohler UA, Bugnon P, Kan YW, Werner S, Beyer TA (2008) The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. Lab Investig 88(10):1068–1078. CrossRefPubMedGoogle Scholar
  83. Xu JH, Qin J, Yan BL, Zhu M, Luo G (2011) Effects of dietary lipid levels on growth performance, feed utilization and fatty acid composition of juvenile Japanese seabass (Lateolabrax japonicus) reared in seawater. Aquac Int 19(1):79–89. CrossRefGoogle Scholar
  84. Xun ZJ, He Z, Zhang Z, Xu H (2004) γ-Glutamyltranspeptidase and its applications. J Nanjing Univ Tech 26(4):106–110Google Scholar
  85. Yang HR, Chang EJ (2016) Insulin resistance, body composition, and fat distribution in obese children with nonalcoholic fatty liver disease. Asia Pac J Clin Nutr 25(1):126–133. PubMedCrossRefGoogle Scholar
  86. Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, Diehl AM (2000) Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys 378(2):259–268. CrossRefPubMedGoogle Scholar
  87. Yuan T, Zhao JN, Bao NR (2014) The progress on the association of tissue and cell damage with free fatty acids. J Med Postgrad 27(9):994–997Google Scholar
  88. Zan HM, Feng L (2005) Activeness detection of serum GGT in the diagnose of liver cancer. J Pract Med Technol 12(9):2347–2349Google Scholar
  89. Zangar RC, Benson JM, Burnett VL, Springer DL (2000) Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes. Chem Biol Interact 125(3):233–243. CrossRefPubMedGoogle Scholar
  90. Zhang XF, Wang LF, Bai YF, Yang HY, Wang ZX, Li FY (2012) Effects of ursodeoxycholic acid combined with Alisma Orientalis treatment on non-alcoholic fatty liver disease. Chin Arch Tradit Chin Med 30(2):274–276Google Scholar
  91. Zhang LH, Yang LM (2001) The serum cholinesterase (CHE) application in liver function determination. Heilongjiang Med 14(4):329Google Scholar
  92. Zhang Q, Yang F (2012) Causes of fatty liver in farmed fish: a review. Feed China 4:43–46Google Scholar
  93. Zhang DD, Zhang JG, Wu X, Liu Y, Gu SY, Zhu GH, Wang YZ, Liu GL, Li XY (2015) Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells. Front Pharmacol 6:238. PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zhou B (2012) Mechanism of steatosis in mice induced by dietary conjugated linoleic acids. Dissertation, Henan Agricultural UniversityGoogle Scholar
  95. Zhou LH, Duan HY, Deng DY (2009) The analysis of the clinical value of blood serum PA and CHE in liver function examination. Lab Med Clinic 6(19):1639–1640Google Scholar
  96. Zhu SY, Zhou YD, Du GH (2009) Protective effect of extract from rhubarb and alismae rhizome on acute liver injury induced by diethylene glycol. J Chongqing Med Univ 34(2):212–215Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research CenterChinese Academy of Fishery SciencesWuxiChina
  2. 2.International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research CenterChinese Academy of Fishery SciencesWuxiChina
  3. 3.Wuxi Fisheries CollegeNanjing Agricultural UniversityWuxiChina

Personalised recommendations