Skip to main content
Log in

Identification of low-molecular-weight vitellogenin 1 (Vg1)-like proteins as nucleotide excision repair (NER) factors in developing zebrafish (Danio rerio) using a transcription-based DNA repair assay

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Nucleotide excision repair (NER) removes helix-distorting DNA lesions such as UV-induced pyrimidine dimers and cisplatin-induced strand crosslinking. Our earlier studies have identified low-molecular-weight proteins homologous to the 150-kDa vitellogenin 1 (Vg1) as UV-damaged DNA-binding factors expressed in developing zebrafish (Danio rerio). This present study explored if Vg1-like proteins also participated in NER in zebrafish. Immunoblot analysis of affinity-captured 12 h post-fertilization (hpf) zebrafish extract proteins showed a transient binding of a 30-kDa Vg1-like polypeptide to UV-damaged DNA. A transcription-based in vitro repair assay revealed a significant up-regulation of UVC or cisplatin-suppressed transcriptional activity of a marker cDNA driven by a SP6 RNA polymerase-regulated promotor after incubating the damaged plasmid with the extracts of 12 hpf embryos or 96 hpf larvae. The up-regulation of UV or cisplatin-suppressed transcription was abolished in the presence of a monoclonal anti-zebrafish Vg1 antibody. The differential sensitivity of UV-induced repair in 12 and 96 hpf zebrafish extracts to exogenous ATP suggested a development-dependent expression of Vg1-like NER factors. A T4 endonuclease V digestion assay showed no inhibition of the anti-Vg1 antibody on the excision of UV-induced cyclobutane pyrimidine dimers. Our results identified the participation of Vg1-like factors in NER in developing zebrafish, and these factors may function at post-incison steps of NER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amacher SL (2008) Emerging gene knockout technology in zebrafish: zinc-finger nucleases. Brief Funct Genomic Proteomic 7:460–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce RP, Howard-Flanders P (1964) Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proc Natl Acad Sci 51:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656

    Article  CAS  PubMed  Google Scholar 

  • De Weerd-Kastelein EA, Keijzer W, Bootsma D (1972) Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nat New Biol 238:80–83

    Article  CAS  PubMed  Google Scholar 

  • DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Invest Dermato 132:785–796

    Article  CAS  Google Scholar 

  • Dong Q, Svoboda K, Tiersch TR, Monroe WT (2007) Photobiological effects of UVA and UVB light in zebrafish embryos: evidence for a competent photorepair system. J Photochem Photobiol B 88:137–146

    Article  CAS  PubMed  Google Scholar 

  • Falchuk KH, Montorzi M (2001) Zinc physiology and biochemistry in oocytes and embryos. Biometals 14:385–395

    Article  CAS  PubMed  Google Scholar 

  • Fortier S, Yang X, Wang Y, Bennett RA, Strauss PR (2009) Base excision repair in early zebrafish development: evidence for DNA polymerase switching and standby AP endonuclease activity. Biochemistry 48:5396–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillet LC, Schärer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106:253–276

    Article  CAS  PubMed  Google Scholar 

  • Groche D, Bashkovetsky LG, Falchuk KH, Auld DS (2000) Subunit composition of the zinc proteins α and β-lipovitellin from chicken. J Protein Chem 19:379–387

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Tang T-S, Friedberg EC (2010) SnapShot: nucleotide excision repair. Cell 140:754

    Article  PubMed  Google Scholar 

  • Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–970

    Article  CAS  PubMed  Google Scholar 

  • Hsu T, Cheng CS, Shih CY, Yeh FL (2002) Detection and partial characterization of a UV-damaged-DNA binding activity highly expressed in zebrafish (Danio rerio) embryos. Fish Physiol Biochem 25:41–51

    Article  Google Scholar 

  • Kang TH, Peardon JT, Sancar A (2011) Regulation of nucleotide excision repair activity by transcriptional and posttranscriptional control of the XPA protein. Nucl Acids Res 39:3176–3187

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Koberle B, Grimaldi KA, Sunters A, Hartley JA, Kelland LR, Masters JRW (1997) DNA repair capacity and cisplatin sensitivity of human testis tumour cells. Int J Cancer 70:551–555

    Article  CAS  PubMed  Google Scholar 

  • Lai YS, Chiue LF, Hsu T (2006) Low-molecular-weight vitellogenin 1-like proteins are components of a UV-damaged-DNA binding activity highly expressed in zebrafish (Danio rerio) embryos. J Exp Zool A 305:215–224

    Article  Google Scholar 

  • Lai YS, Hsieh FJ, Hsu T (2012) Affinity isolation and mass spectral analysis of 1,10-phenanthroline (OP)-stimulated UV-damaged-DNA binding proteins expressed in zebrafish (Danio rerio) embryos. Fish Physiol Biochem 38:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Langheinrich U, Hennen E, Stott G, Vacun G (2002) Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12:2023–2028

    Article  CAS  PubMed  Google Scholar 

  • Mathieu N, Kaczmarek N, Ruthemann P, Luch A, Naegeli H (2013) DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr Biol 23:204–212

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Bartholomew C, Craft JA (2010) Differential expression of vitellogenin and oestrogen receptor genes in the liver of zebrafish, Danio rerio. Anal Bioanal Chem 396:625–630

    Article  CAS  PubMed  Google Scholar 

  • Montorzi M, Falchuk KH, Vallee BL (1995) Vitellogenin and lipovitellin: zinc proteins of Xenopus laevis oocytes. Biochemistry 34:10851–10858

    Article  CAS  PubMed  Google Scholar 

  • Nishi R, Alekseev S, Dinant C, Hoogstraten D, Houtsmuller AB, Hoeijmakers JH, Vermeulen W, Hanaoka F, Sugasawa K (2009) UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair 8:767–776

    Article  CAS  PubMed  Google Scholar 

  • Notch EG, Miniutti DM, Mayer GD (2007) 17 alpha-Ethinylestradiol decreases expression of multiple hepatic nucleotide excision repair genes in zebrafish (Danio rerio). Aquat Toxicol 84:301–309

    Article  CAS  PubMed  Google Scholar 

  • Nouspikei T (2009) DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell Mol Life Sci 66:994–1009

    Article  Google Scholar 

  • Pasheva E, Pasheva I, Favre A (1998) Preferential binding of high mobility group 1 protein to UV-damaged DNA: role of the COOH-terminal domain. J Biol Chem 273:24730–24736

    Article  CAS  PubMed  Google Scholar 

  • Pei DS, Strauss PR (2013) Zebrafish as a model system to study DNA damage and repair. Mutat Res 743-744:151–159

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Spitz MR, Guo Z, Hadeyati M, Grossman L, Kraemer KH, Wei Q (2002) Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlations with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat Res 509:165–174

    Article  CAS  PubMed  Google Scholar 

  • Radany EH, Friedberg EC (1980) A pyrimidine dimer-DNA glycosylase activity associated with the v gene of bacteriophage T4. Nature 286:182–185

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtle T, Walter I, Hartwig A (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair 2:1449–1463

    Article  CAS  PubMed  Google Scholar 

  • Silva IA, Cancela ML, Conceicao N (2012) Molecular cloning and expression analysis of xpd from zebrafish (Danio rerio). Mol Biol Rep 39:5339–5348

    Article  CAS  PubMed  Google Scholar 

  • Sugasawa K, Masutani C, Hanaoka F (1993) Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts I. Development of a cell-free system detecting excision repair of UV-irradiated SV 40 chromosomes. J Biol Chem 268:9098–9104

    CAS  PubMed  Google Scholar 

  • Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Twai S, Hanaoka F (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 15:507–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387–400

    Article  CAS  PubMed  Google Scholar 

  • Sussman R (2007) DNA repair capacity of zebrafish. Proc Natl Acad Sci 104:13379–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Miura N, Setokara I, Miyamoto I, Yoshida MC, Satoh Y, Kondo S, Yasui A, Okayama H, Okada Y (1990) Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 348:73–76

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Chu G (2002) Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair 1:601–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Y, Shan T, Poh YK, Yan T, Wang H, Lam SH, Gong Z (2004) Molecular cloning of zebrafish and medaka vitellogenin genes and comparison of their expression in response to 17beta-estradiol. Gene 328:25–36

    Article  CAS  PubMed  Google Scholar 

  • Vichi P, Coin F, Renaud JP, Vermeulen W, Hoeijmakers JHJ, Moras D (1997) Cisplatin and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J 16:7444–7456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yan T, Tan JTT, Gong Z (2000) A zebrafish vitellogenin gene (vg3) encodes a novel vitellogenin without a phosvitin domain and may represent a primitive vertebrate vitellogenin gene. Gene 256:303–310

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Tan JT, Emelyanov A, Korzh V, Gong Z (2005) Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio. Gene 356:91–100

    Article  CAS  PubMed  Google Scholar 

  • Yeh F-L, Yan H-L, Wang S-Y, Jung T-Y, Hsu T (2003) Molecular cloning of zebrafish (Danio rerio) MutS homolog 6 (MSH6) and noncoordinate expression of MSH6 gene activity and G-T mismatch binding proteins in zebrafish larvae. J Exp Zool A 297:118–129

    Article  Google Scholar 

  • Zeng Z, Richardson J, Verduzco D, Mitchell DL, Patton EE (2006) Zebrafish have a competent p53-dependent nucleotide excision repair pathways to resolve ultraviolet B-induced DNA damage in the skin. Zebrafish 6:405–415

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of Taiwan, Republic of China, under grant numbers NSC 100-2313-B-019-009 and NSC 102-2313-B-019-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Hsu.

Electronic supplementary material

Suppl. Fig.1.

Detection of T4 endonuclease V-mediated incision of UV-irradiated TT probe carrying a CPD by denaturing PAGE. Biotin-labelled duplex TT probe (4 pmole) was irradiated with UV at 9 kJ m-2 to generate a CPD between two adjacent TT bases on one strand according to a previous report (Pasheva et al. 1998). To confirm the production of CPD, UV-irradiated or unirradiated TT probe was incubated at 37 °C for 16 h with CPD-specific T4 endonuclease V(1 unit). The reaction mixture was electrophoresed on a 6% denaturing polyacrylamide gel and blotted overnight onto a nylon membrane. The presence of a biotin-labelled 5’ short single strand fragment (see arrow) due to enzyme-mediated incision and strand cleavage was detected by incubating the membrane with streptavidin-conjugated alkaline phosphatase and chemilluminesent enzyme substrates. (PPTX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, YC., Hsu, T., Ling, LB. et al. Identification of low-molecular-weight vitellogenin 1 (Vg1)-like proteins as nucleotide excision repair (NER) factors in developing zebrafish (Danio rerio) using a transcription-based DNA repair assay. Fish Physiol Biochem 43, 663–676 (2017). https://doi.org/10.1007/s10695-016-0321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0321-4

Keywords

Navigation